Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_269_0, author = {Brezis, Ha{\"\i}m}, title = {Comments on two {Notes} by {L.} {Ma} and {X.} {Xu}}, journal = {Comptes Rendus. Math\'ematique}, pages = {269--271}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.024/} }
TY - JOUR AU - Brezis, Haïm TI - Comments on two Notes by L. Ma and X. Xu JO - Comptes Rendus. Mathématique PY - 2011 SP - 269 EP - 271 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.024/ DO - 10.1016/j.crma.2011.01.024 LA - en ID - CRMATH_2011__349_5-6_269_0 ER -
Brezis, Haïm. Comments on two Notes by L. Ma and X. Xu. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 269-271. doi : 10.1016/j.crma.2011.01.024. http://www.numdam.org/articles/10.1016/j.crma.2011.01.024/
[1] Semilinear equations in without condition at infinity, Appl. Math. Optim., Volume 12 (1984), pp. 271-282
[2] Quelques propriétés des solutions de lʼéquation de Ginzburg–Landau sur un ouvert de , Potential Anal., Volume 5 (1996), pp. 591-609
[3] On solutions to , Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[4] Partial differential equations invariant under conformal or projective transformations, Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, 1974, pp. 245-272
[5] Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 993-996
[6] Uniform bound and a non-existence result for the Lichnerowicz equation in the whole n-space, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 805-808
[7] On the inequality , Pac. J. Math., Volume 7 (1957), pp. 1641-1647
Cité par Sources :