Geometry
On a class of Riemannian metrics arising from Finsler structures
[Sur une classe de métriques riemanniennes issues de structures finsleriennes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 319-322.

Sur le fibré tangent dʼune variéte finslerienne, nous introduisons une certaines classe de métriques et étudions la relation entre la connexion de Levi-Civita, la connexion de Vaisman, et les espaces de Reinhart. Nous montrons que les connexions de Levi-Civita et de Vaisman induisent les mêmes connexions dans le fibré structurel si seulement si la variété de base est de Landsberg. En outre, toute varété de Reinhart feuilletée se réduit à une variété riemannienne.

On the slit tangent bundle of Finsler manifolds, we introduce a class of metrics and study the relation between Levi-Civita connection, Vaisman connection, vertical foliation, and Reinhart spaces. We show that the Levi-Civita and the Vaisman connections induce the same connections in the structural bundle if and only if the base manifold is Landsbergian. Moreover every foliated Reinhart manifold reduces to a Riemannian manifold.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.021
Tayebi, Akbar 1 ; Peyghan, Esmaeil 2

1 Department of Mathematics, Faculty of Science, Qom University, Qom, Iran
2 Department of Mathematics, Faculty of Science, University of Arak, Arak, Iran
@article{CRMATH_2011__349_5-6_319_0,
     author = {Tayebi, Akbar and Peyghan, Esmaeil},
     title = {On a class of {Riemannian} metrics arising from {Finsler} structures},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {319--322},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.021/}
}
TY  - JOUR
AU  - Tayebi, Akbar
AU  - Peyghan, Esmaeil
TI  - On a class of Riemannian metrics arising from Finsler structures
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 319
EP  - 322
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.01.021/
DO  - 10.1016/j.crma.2011.01.021
LA  - en
ID  - CRMATH_2011__349_5-6_319_0
ER  - 
%0 Journal Article
%A Tayebi, Akbar
%A Peyghan, Esmaeil
%T On a class of Riemannian metrics arising from Finsler structures
%J Comptes Rendus. Mathématique
%D 2011
%P 319-322
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.01.021/
%R 10.1016/j.crma.2011.01.021
%G en
%F CRMATH_2011__349_5-6_319_0
Tayebi, Akbar; Peyghan, Esmaeil. On a class of Riemannian metrics arising from Finsler structures. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 319-322. doi : 10.1016/j.crma.2011.01.021. http://www.numdam.org/articles/10.1016/j.crma.2011.01.021/

[1] Abbassi, K.M.T.; Kowalski, O. On Einstein Riemannian g-natural metrics on unit tangent sphere bundles, Ann. Global Anal. Geom., Volume 38 (2010) no. 1, pp. 11-20

[2] Bejancu, A. Finsler Geometry and Applications, Ellis Horwood, New York, 1990

[3] Bejancu, A.; Farran, H.R. A geometric characterization of Finsler manifolds of constant curvature K=1, Internat. J. Math. Math. Sci., Volume 23 (2000), pp. 399-407

[4] Bejancu, A.; Farran, H.R. Finsler metrics of positive constant flag curvature on Sasakian space forms, Hokkaido Math. J., Volume 31 (2002), pp. 459-468

[5] Bejancu, A.; Farran, H.R. Foliation and Geometrics Structures, Springer, 2006

[6] Bejancu, A.; Farran, H.R. Finsler geometry and natural foliations on the tangent bundle, Rep. Math. Phys., Volume 58 (2006), pp. 131-146

[7] Bejancu, A.; Farran, H.R. On totally geodesic foliations with bundle-like metric, J. Geom., Volume 85 (2006), pp. 7-14

[8] Oproiu, V.; Papaghiuc, N. A Kähler structure on the non-zero tangent bundle of a space form, Diff. Geom. Appl., Volume 11 (1999), pp. 1-12

[9] Vaisman, I. Cohomology and Differential Forms, Marcel Dekker Inc., New York, 1973

Cité par Sources :