Complex Analysis/Analytic Geometry
Hyperbolic embeddability of locally complete almost complex submanifolds
[Plongement hyperbolique des sous variétés presques complexe localement complètes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 259-262.

Dans cette Note, on généralise dans le cas presque complexe un théorème de Zaidenberg (1983) [13] et Thai (1991) [12] en donnant une caractérisation des variétés presque complexe relativement compacte, hyperboliquement plongés et localement complètes en terme dʼextension des courbes pseudo-holomorphes et des limites de droites J-complexes.

In this Note, we generalize to the almost complex setting, a theorem of Zaidenberg (1983) [13] and Thai (1991) [12] by giving a characterization on hyperbolic embeddability of a locally complete and relatively compact almost complex submanifold in terms of extension of pseudo-holomorphic disks from the punctured unit disk and of limit J-complex lines.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.020
Khalfallah, Adel 1

1 Institut préparatoire aux études dʼingénieur de Monastir, rue Ibn-Aljazzar, 5019 Monastir, Tunisia
@article{CRMATH_2011__349_5-6_259_0,
     author = {Khalfallah, Adel},
     title = {Hyperbolic embeddability of locally complete almost complex submanifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {259--262},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/}
}
TY  - JOUR
AU  - Khalfallah, Adel
TI  - Hyperbolic embeddability of locally complete almost complex submanifolds
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 259
EP  - 262
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/
DO  - 10.1016/j.crma.2011.01.020
LA  - en
ID  - CRMATH_2011__349_5-6_259_0
ER  - 
%0 Journal Article
%A Khalfallah, Adel
%T Hyperbolic embeddability of locally complete almost complex submanifolds
%J Comptes Rendus. Mathématique
%D 2011
%P 259-262
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/
%R 10.1016/j.crma.2011.01.020
%G en
%F CRMATH_2011__349_5-6_259_0
Khalfallah, Adel. Hyperbolic embeddability of locally complete almost complex submanifolds. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 259-262. doi : 10.1016/j.crma.2011.01.020. http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/

[1] Debalme, R.; Ivachkovitch, S. Complete hyperbolic neighborhoods in almost complex surfaces, Int. J. Math., Volume 12 (2001) no. 2, pp. 211-221

[2] Gaussier, H.; Suhkov, A. Estimates of the Kobayashi Royden metric on almost complex manifolds, Bull. Soc. Math. France, Volume 133 (2005) no. 2, pp. 259-273

[3] Green, M. The hyperbolicity of 2n+1 hyperplanes in general position in Pn, and related results, Proc. Am. Math. Soc., Volume 66 (1977), pp. 109-113

[4] Haggui, F.; Khalfallah, A. Hyperbolic embeddedness and extension-convergence theorems of J-holomorphic curves, Math. Z., Volume 262 (2009), pp. 363-379

[5] Joo, J.C. Generalized big Picard theorem for pseudo-holomorphic maps, J. Math. Anal. Appl., Volume 232 (2006), pp. 1333-1347

[6] Kobayashi, S. Hyperbolic Complex Spaces, Springer, Berlin, 1998

[7] Kwack, M.H. Generalization of the big Picard theorem, Ann. Math., Volume 90 (1969), pp. 9-22

[8] Lang, S. Introduction to Complex Hyperbolic Spaces, Springer, New York, 1987

[9] Muller, M.-P. Gromovʼs Schwarz lemma as an estimate of the gradient for holomorphic curves (Audin, M.; Lafontaine, J., eds.), Holomorphic Curves in Symplectic Geometry, Progr. Math., vol. 117, Birkhauser, Basel, 1994, pp. 217-231

[10] Noguchi, J.; Ochiai, T. Geometric Function Theory in Several Complex Variables, Amer. Math. Soc., Providence, RI, 1990

[11] Sikorav, J.-C. Some properties of holomorphic curves in almost complex manifolds (Audin, M.; Lafontaine, J., eds.), Holomorphic Curves in Symplectic Geometry, Birkhauser, Bassel, 1994, pp. 165-189

[12] Thai, D.D. Remark on hyperbolic embeddability of relative compact subspaces of complex spaces, Ann. Polon. Math., Volume 54 (1991) no. 1, pp. 9-11

[13] Zaidenberg, M. Picard theorem and hyperbolicity, Siberian Math. J., Volume 24 (1983) no. 6, pp. 44-55

Cité par Sources :