Dans cette Note, on généralise dans le cas presque complexe un théorème de Zaidenberg (1983) [13] et Thai (1991) [12] en donnant une caractérisation des variétés presque complexe relativement compacte, hyperboliquement plongés et localement complètes en terme dʼextension des courbes pseudo-holomorphes et des limites de droites J-complexes.
In this Note, we generalize to the almost complex setting, a theorem of Zaidenberg (1983) [13] and Thai (1991) [12] by giving a characterization on hyperbolic embeddability of a locally complete and relatively compact almost complex submanifold in terms of extension of pseudo-holomorphic disks from the punctured unit disk and of limit J-complex lines.
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_259_0, author = {Khalfallah, Adel}, title = {Hyperbolic embeddability of locally complete almost complex submanifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {259--262}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/} }
TY - JOUR AU - Khalfallah, Adel TI - Hyperbolic embeddability of locally complete almost complex submanifolds JO - Comptes Rendus. Mathématique PY - 2011 SP - 259 EP - 262 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/ DO - 10.1016/j.crma.2011.01.020 LA - en ID - CRMATH_2011__349_5-6_259_0 ER -
%0 Journal Article %A Khalfallah, Adel %T Hyperbolic embeddability of locally complete almost complex submanifolds %J Comptes Rendus. Mathématique %D 2011 %P 259-262 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/ %R 10.1016/j.crma.2011.01.020 %G en %F CRMATH_2011__349_5-6_259_0
Khalfallah, Adel. Hyperbolic embeddability of locally complete almost complex submanifolds. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 259-262. doi : 10.1016/j.crma.2011.01.020. http://www.numdam.org/articles/10.1016/j.crma.2011.01.020/
[1] Complete hyperbolic neighborhoods in almost complex surfaces, Int. J. Math., Volume 12 (2001) no. 2, pp. 211-221
[2] Estimates of the Kobayashi Royden metric on almost complex manifolds, Bull. Soc. Math. France, Volume 133 (2005) no. 2, pp. 259-273
[3] The hyperbolicity of hyperplanes in general position in , and related results, Proc. Am. Math. Soc., Volume 66 (1977), pp. 109-113
[4] Hyperbolic embeddedness and extension-convergence theorems of J-holomorphic curves, Math. Z., Volume 262 (2009), pp. 363-379
[5] Generalized big Picard theorem for pseudo-holomorphic maps, J. Math. Anal. Appl., Volume 232 (2006), pp. 1333-1347
[6] Hyperbolic Complex Spaces, Springer, Berlin, 1998
[7] Generalization of the big Picard theorem, Ann. Math., Volume 90 (1969), pp. 9-22
[8] Introduction to Complex Hyperbolic Spaces, Springer, New York, 1987
[9] Gromovʼs Schwarz lemma as an estimate of the gradient for holomorphic curves (Audin, M.; Lafontaine, J., eds.), Holomorphic Curves in Symplectic Geometry, Progr. Math., vol. 117, Birkhauser, Basel, 1994, pp. 217-231
[10] Geometric Function Theory in Several Complex Variables, Amer. Math. Soc., Providence, RI, 1990
[11] Some properties of holomorphic curves in almost complex manifolds (Audin, M.; Lafontaine, J., eds.), Holomorphic Curves in Symplectic Geometry, Birkhauser, Bassel, 1994, pp. 165-189
[12] Remark on hyperbolic embeddability of relative compact subspaces of complex spaces, Ann. Polon. Math., Volume 54 (1991) no. 1, pp. 9-11
[13] Picard theorem and hyperbolicity, Siberian Math. J., Volume 24 (1983) no. 6, pp. 44-55
Cité par Sources :