[Le théorème de Sard quantitatif via le lemme algébrique de Gromov]
We give a short proof of the so-called Quantitative Morse–Sard Theorem as an application of Gromovʼs Algebraic Lemma.
Nous donnons une preuve courte du théorème quantitatif de Morse–Sard comme application du lemme algébrique de Gromov.
Accepté le :
Publié le :
Burguet, David 1
@article{CRMATH_2011__349_7-8_441_0,
author = {Burguet, David},
title = {Quantitative {Morse{\textendash}Sard} {Theorem} via {Algebraic} {Lemma}},
journal = {Comptes Rendus. Math\'ematique},
pages = {441--443},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {7-8},
doi = {10.1016/j.crma.2011.01.019},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.01.019/}
}
TY - JOUR AU - Burguet, David TI - Quantitative Morse–Sard Theorem via Algebraic Lemma JO - Comptes Rendus. Mathématique PY - 2011 SP - 441 EP - 443 VL - 349 IS - 7-8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.01.019/ DO - 10.1016/j.crma.2011.01.019 LA - en ID - CRMATH_2011__349_7-8_441_0 ER -
Burguet, David. Quantitative Morse–Sard Theorem via Algebraic Lemma. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 441-443. doi: 10.1016/j.crma.2011.01.019
[1] A proof of Yomdin–Gromovʼs algebraic lemma, Israel J. Math., Volume 168 (2008), pp. 291-316
[2] Entropy, homology and semi-algebraic geometry, Astérisque, Volume 145–146 (1987), pp. 225-240
[3] Variatsii Mnozhestv i Funktsii (Vituskin, A.G., ed.), Izdat. Nauka, Moscow, 1975 (in Russian)
[4] The rational points of a definable set, Duke Mathematical Journal, Volume 133 (2006), pp. 591-616
[5] Tame Topology and O-minimal Structures, Cambridge University Press, 1998
[6] The geometry of critical and near-critical values of differentiable mappings, Math. Ann., Volume 264 (1983), pp. 495-515
[7] Tame geometry with application in smooth analysis, Lecture Notes in Mathematics, vol. 1834, Springer-Verlag, Berlin, 2004
Cité par Sources :





