Nous donnons une preuve courte du théorème quantitatif de Morse–Sard comme application du lemme algébrique de Gromov.
We give a short proof of the so-called Quantitative Morse–Sard Theorem as an application of Gromovʼs Algebraic Lemma.
Accepté le :
Publié le :
@article{CRMATH_2011__349_7-8_441_0, author = {Burguet, David}, title = {Quantitative {Morse{\textendash}Sard} {Theorem} via {Algebraic} {Lemma}}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--443}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.01.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/} }
TY - JOUR AU - Burguet, David TI - Quantitative Morse–Sard Theorem via Algebraic Lemma JO - Comptes Rendus. Mathématique PY - 2011 SP - 441 EP - 443 VL - 349 IS - 7-8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/ DO - 10.1016/j.crma.2011.01.019 LA - en ID - CRMATH_2011__349_7-8_441_0 ER -
Burguet, David. Quantitative Morse–Sard Theorem via Algebraic Lemma. Comptes Rendus. Mathématique, Tome 349 (2011) no. 7-8, pp. 441-443. doi : 10.1016/j.crma.2011.01.019. http://www.numdam.org/articles/10.1016/j.crma.2011.01.019/
[1] A proof of Yomdin–Gromovʼs algebraic lemma, Israel J. Math., Volume 168 (2008), pp. 291-316
[2] Entropy, homology and semi-algebraic geometry, Astérisque, Volume 145–146 (1987), pp. 225-240
[3] Variatsii Mnozhestv i Funktsii (Vituskin, A.G., ed.), Izdat. Nauka, Moscow, 1975 (in Russian)
[4] The rational points of a definable set, Duke Mathematical Journal, Volume 133 (2006), pp. 591-616
[5] Tame Topology and O-minimal Structures, Cambridge University Press, 1998
[6] The geometry of critical and near-critical values of differentiable mappings, Math. Ann., Volume 264 (1983), pp. 495-515
[7] Tame geometry with application in smooth analysis, Lecture Notes in Mathematics, vol. 1834, Springer-Verlag, Berlin, 2004
Cité par Sources :