Soit et sa décomposition polaire. Nous montrons que : (i) si T est log-hyponormal ou p-hyponormal et pour un certain n, alors T est normal ; (ii) si le spectre de U est contenu dans un arc de cercle, alors T est normal si et seulement sʼil en est de même de son transformé de Aluthge .
Let and be its polar decomposition. We prove that (i) if T is log-hyponormal or p-hyponormal and for some n, then T is normal; (ii) if the spectrum of U is contained in some open semicircle, then T is normal if and only if so is its Aluthge transform .
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_251_0, author = {Moslehian, M.S. and Nabavi Sales, S.M.S.}, title = {Some conditions implying normality of operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {251--254}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.018}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.018/} }
TY - JOUR AU - Moslehian, M.S. AU - Nabavi Sales, S.M.S. TI - Some conditions implying normality of operators JO - Comptes Rendus. Mathématique PY - 2011 SP - 251 EP - 254 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.018/ DO - 10.1016/j.crma.2011.01.018 LA - en ID - CRMATH_2011__349_5-6_251_0 ER -
%0 Journal Article %A Moslehian, M.S. %A Nabavi Sales, S.M.S. %T Some conditions implying normality of operators %J Comptes Rendus. Mathématique %D 2011 %P 251-254 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.018/ %R 10.1016/j.crma.2011.01.018 %G en %F CRMATH_2011__349_5-6_251_0
Moslehian, M.S.; Nabavi Sales, S.M.S. Some conditions implying normality of operators. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 251-254. doi : 10.1016/j.crma.2011.01.018. http://www.numdam.org/articles/10.1016/j.crma.2011.01.018/
[1] On p-hyponormal operators for , Integral Equations Operator Theory, Volume 13 (1990), pp. 307-315
[2] w-hyponormal operators, Integral Equations Operator Theory, Volume 36 (2000), pp. 1-10
[3] A note on normal operators and their adjoints, J. London Math. Soc., Volume 31 (1956), pp. 213-216
[4] On nth roots of normal operators, Bull. London Math. Soc., Volume 25 (1993), pp. 74-80
[5] nth roots of normal contractions, Proc. Amer. Math. Soc., Volume 19 (1968), pp. 63-68
[6] On quasisimilarity for log-hyponormal operator, Glasgow Math. J., Volume 46 (2004), pp. 169-176
[7] Invitation to Linear Operator, Taylor and Francis, London, New York, 2001
[8] A condition under which follows from , Proc. Amer. Math. Soc., Volume 135 (2007), pp. 1399-1403
[9] On square roots of normal operators, Proc. Amer. Math. Soc., Volume 8 (1957), pp. 768-769
[10] On roots of normal operators, J. Math. Anal. Appl., Volume 34 (1971), pp. 653-664
[11] Hyponormal operators, Pacific J. Math., Volume 12 (1962), pp. 1453-1458
[12] On the converse of Fuglede–Putnam theorem, Acta Sci. Math. (Szeged), Volume 43 (1981), pp. 123-125
[13] On log-hyponormal operators, Integral Equations Operator Theory, Volume 34 (1999), pp. 364-372
[14] Fuglede–Putnamʼs theorem for p-hyponormal or log-hyponormal operators, Glasgow Math. J., Volume 44 (2002), pp. 397-410
Cité par Sources :