Partial Differential Equations
Non-local PDEs with a state-dependent delay term presented by Stieltjes integral
[EDP non-locales avec terme à retards dépendants de l'état exprimé par une intégrale de Stieltjes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 179-183.

On étudie des équations aux dérivées partielles avec des retards dépendants de l'état (RDE). Le terme comportant les retards est exprimé par une intégrale de Stieltjes incluant des RDE discrets et distribués. Une mesure de Lebesgue–Stieltjes singulière est aussi admissible. On présente des conditions pour que le problème de Cauchy soit bien posé. On montre l'existence d'un attracteur global compact.

Parabolic partial differential equations with state-dependent delays (SDDs) are investigated. The delay term presented by Stieltjes integral simultaneously includes discrete and distributed SDDs. The singular Lebesgue–Stieltjes measure is also admissible. The conditions for the corresponding initial value problem to be well-posed are presented. The existence of a compact global attractor is proved.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.012
Rezounenko, Alexander V. 1

1 Department of Mechanics and Mathematics, Kharkov University, 4, Svobody Sqr., Kharkov, 61077, Ukraine
@article{CRMATH_2011__349_3-4_179_0,
     author = {Rezounenko, Alexander V.},
     title = {Non-local {PDEs} with a state-dependent delay term presented by {Stieltjes} integral},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {179--183},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.012/}
}
TY  - JOUR
AU  - Rezounenko, Alexander V.
TI  - Non-local PDEs with a state-dependent delay term presented by Stieltjes integral
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 179
EP  - 183
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.01.012/
DO  - 10.1016/j.crma.2011.01.012
LA  - en
ID  - CRMATH_2011__349_3-4_179_0
ER  - 
%0 Journal Article
%A Rezounenko, Alexander V.
%T Non-local PDEs with a state-dependent delay term presented by Stieltjes integral
%J Comptes Rendus. Mathématique
%D 2011
%P 179-183
%V 349
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.01.012/
%R 10.1016/j.crma.2011.01.012
%G en
%F CRMATH_2011__349_3-4_179_0
Rezounenko, Alexander V. Non-local PDEs with a state-dependent delay term presented by Stieltjes integral. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 179-183. doi : 10.1016/j.crma.2011.01.012. http://www.numdam.org/articles/10.1016/j.crma.2011.01.012/

[1] Azbelev, N.V.; Maksimov, V.P.; Rakhmatullina, L.F. Introduction to the Theory of Functional Differential Equations, Nauka, Moscow, 1991

[2] Babin, A.V.; Vishik, M.I. Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992

[3] Chueshov, I.D. On a certain system of equations with delay, occuring in aeroelasticity, J. Soviet Math., Volume 58 (1992), pp. 385-390

[4] Chueshov, I.D.; Rezounenko, A.V. Global attractors for a class of retarded quasilinear partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 607-612

[5] Chueshov, I.D. Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 http://www.emis.de/monographs/Chueshov (in Russian); English transl.:, 2002, Acta, Kharkov

[6] Diekmann, O.; van Gils, S.; Verduyn Lunel, S.; Walther, H.-O. Delay Equations: Functional, Complex, and Nonlinear Analysis, Springer-Verlag, New York, 1995

[7] Hadamard, J. Le problème de Cauchy et les èquations aux derivees partielles linéaires hyperboliques, Hermann, Paris, 1932

[8] Hale, J.K.; Verduyn Lunel, S.M. Theory of Functional Differential Equations, Springer-Verlag, New York, 1993

[9] Hartung, F.; Krisztin, T.; Walther, H.-O.; Wu, J. Functional differential equations with state-dependent delays: theory and applications (Canada, A.; Drabek, P.; Fonda, A., eds.), Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, Elsevier B.V., 2006

[10] Hernandez, E.; Prokopczyk, A.; Ladeira, L. A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. Real World Appl., Volume 7 (2006) no. 4, pp. 510-519

[11] Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969

[12] Lions, J.L.; Magenes, E. Problèmes aux Limites Non Homogénes et applications, Dunod, Paris, 1968

[13] Kolmogorov, A.N.; Fomin, S.V. Elements of Theory of Functions and Functional Analysis, Nauka, Moscow, 1968

[14] Krisztin, T. A local unstable manifold for differential equations with state-dependent delay, Discrete Contin. Dyn. Syst., Volume 9 (2003), pp. 933-1028

[15] Mallet-Paret, J.; Nussbaum, R.D.; Paraskevopoulos, P. Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., Volume 3 (1994) no. 1, pp. 101-162

[16] Rezounenko, A.V.; Wu, J. A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors, J. Comput. Appl. Math., Volume 190 (2006) no. 1–2, pp. 99-113

[17] Rezounenko, A.V. Partial differential equations with discrete and distributed state-dependent delays, J. Math. Anal. Appl., Volume 326 (March 22, 2005) no. 2, pp. 1031-1045 (see also detailed preprint) | arXiv

[18] Rezounenko, A.V. Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal., Volume 70 (2009), pp. 3978-3986

[19] So, J.W.-H.; Yang, Y. Dirichlet problem for the diffusive Nicholson's blowflies equation, J. Differential Equations, Volume 150 (1998) no. 2, pp. 317-348

[20] Temam, R. Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin/Heidelberg/New York, 1988

[21] Travis, C.C.; Webb, G.F. Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., Volume 200 (1974), pp. 395-418

[22] Walther, H.-O. Stable periodic motion of a system with state dependent delay, Differential Integral Equations, Volume 15 (2002), pp. 923-944

[23] Walther, H.-O. The solution manifold and C1-smoothness for differential equations with state-dependent delay, J. Differential Equations, Volume 195 (2003) no. 1, pp. 46-65

[24] Walther, H.-O. On a model for soft landing with state-dependent delay, J. Dynam. Differential Equations, Volume 19 (2007) no. 3, pp. 593-622

[25] Winston, E. Uniqueness of the zero solution for differential equations with state-dependence, J. Differential Equations, Volume 7 (1970), pp. 395-405

[26] Wu, J. Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996

[27] Yosida, K. Functional Analysis, Springer-Verlag, New York, 1965

Cité par Sources :