En presque tout point c par rapport à la mesure harmonique, le lieu de connectivité est asymptotiquement similaire au sens conforme à lʼensemble de Julia près de c. Tout point de concentration de la mesure harmonique est un point de densité du complémentaire de qui nʼest pas bien accessibles du complémentaire de , autour duquel la frontière de est en spirale une infinité de fois dans deux directions opposées. Pour lʼensemble de Mandelbrot on peut obtenir un résultat plus général en terme de la propriété de renormalisation. Finalement, on démontre que pour presque toute valeur de par rapport à la mesure harmonique, lʼexposant de Lyapunov de c sous la dynamique de est égal à .
An almost conformal local similarity between the connectedness locus and the corresponding Julia set is true for almost every point of with respect to harmonic measure. The harmonic measure is supported on Lebesgue density points of the complement of which are not accessible from outside within John angles and at which the boundary of spirals infinitely often in both directions. A more general result can be obtained for in terms of the renormalization property. Finally, we prove that for almost all in the sense of harmonic measure the Lyapunov exponent of c under iterates of is equal to .
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_309_0, author = {Graczyk, Jacek and \'Swia̧tek, Grzegorz}, title = {Asymptotically conformal similarity between {Julia} and {Mandelbrot} sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {309--314}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/} }
TY - JOUR AU - Graczyk, Jacek AU - Świa̧tek, Grzegorz TI - Asymptotically conformal similarity between Julia and Mandelbrot sets JO - Comptes Rendus. Mathématique PY - 2011 SP - 309 EP - 314 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/ DO - 10.1016/j.crma.2011.01.010 LA - en ID - CRMATH_2011__349_5-6_309_0 ER -
%0 Journal Article %A Graczyk, Jacek %A Świa̧tek, Grzegorz %T Asymptotically conformal similarity between Julia and Mandelbrot sets %J Comptes Rendus. Mathématique %D 2011 %P 309-314 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/ %R 10.1016/j.crma.2011.01.010 %G en %F CRMATH_2011__349_5-6_309_0
Graczyk, Jacek; Świa̧tek, Grzegorz. Asymptotically conformal similarity between Julia and Mandelbrot sets. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 309-314. doi : 10.1016/j.crma.2011.01.010. http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/
[1] For almost every tent map, the turning point is typical, Fund. Math., Volume 155 (1998) no. 3, pp. 215-235
[2] Wild Cantor attractors exist, Ann. of Math. (2), Volume 143 (1996) no. 1, pp. 97-130
[3] Julia and John, Bol. Soc. Bras. Mat., Volume 25 (1994), pp. 1-30
[4] On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. (Paris), Volume 18 (1985), pp. 287-343
[5] Bull. Soc. Math. France, 51 (1923), p. 22
[6] Collet, Eckmann, & Hölder, Invent. Math., Volume 133 (1998), pp. 69-96
[7] The Real Fatou Conjecture, Ann. of Math. Stud., Princeton University Press, 1998
[8] Harmonic measure and expansion on the boundary of the connectedness locus, Invent. Math., Volume 142 (2000) no. 3, pp. 605-629
[9] J. Graczyk, G. Świa̧tek, Fine structure of the Mandelbrot set, manuscript.
[10] M. Herman, Problems on complex dynamics, manuscript, 1987.
[11] Boundary Behavior of Conformal Maps, Springer-Verlag, New York, 1992
[12] On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math., Volume 170 (2001), pp. 287-317
[13] Topological, geometric and complex analytic properties of Julia sets, Zürich, 1994, Birkhäuser, Basel (1995), pp. 886-895
[14] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math., Volume 147 (1998), pp. 225-267
[15] Symbolic dynamics and Collet–Eckmann conditions, Int. Math. Res. Not., Volume 7 (2000), pp. 333-351
[16] Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys., Volume 134 (1990) no. 3, pp. 587-617
Cité par Sources :
☆ Partially supported by Research Training Network CODY.