Harmonic Analysis/Dynamical Systems
Asymptotically conformal similarity between Julia and Mandelbrot sets
[Similitude conforme asymptotiquement entre les ensembles de Julia et de Mandelbrot]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 309-314.

En presque tout point c par rapport à la mesure harmonique, le lieu de connectivité Md est asymptotiquement similaire au sens conforme à lʼensemble de Julia Jc près de c. Tout point de concentration de la mesure harmonique est un point de densité du complémentaire de Md qui nʼest pas bien accessibles du complémentaire de Md, autour duquel la frontière de Md est en spirale une infinité de fois dans deux directions opposées. Pour lʼensemble de Mandelbrot (d=2) on peut obtenir un résultat plus général en terme de la propriété de renormalisation. Finalement, on démontre que pour presque toute valeur de cMd par rapport à la mesure harmonique, lʼexposant de Lyapunov de c sous la dynamique de zd+c est égal à logd.

An almost conformal local similarity between the connectedness locus Md and the corresponding Julia set is true for almost every point of Md with respect to harmonic measure. The harmonic measure is supported on Lebesgue density points of the complement of Md which are not accessible from outside within John angles and at which the boundary of Md spirals infinitely often in both directions. A more general result can be obtained for d=2 in terms of the renormalization property. Finally, we prove that for almost all cMd in the sense of harmonic measure the Lyapunov exponent of c under iterates of zd+c is equal to logd.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.01.010
Graczyk, Jacek 1 ; Świa̧tek, Grzegorz 2

1 Laboratoire de mathématique, université de Paris-Sud, 91405 Orsay cedex, France
2 Laboratoire de mathématique et informatique, École polytechnique de Varsovie, 00-661 Varsovie, Pl. Politechniki 1, Poland
@article{CRMATH_2011__349_5-6_309_0,
     author = {Graczyk, Jacek and \'Swia̧tek, Grzegorz},
     title = {Asymptotically conformal similarity between {Julia} and {Mandelbrot} sets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {309--314},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/}
}
TY  - JOUR
AU  - Graczyk, Jacek
AU  - Świa̧tek, Grzegorz
TI  - Asymptotically conformal similarity between Julia and Mandelbrot sets
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 309
EP  - 314
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/
DO  - 10.1016/j.crma.2011.01.010
LA  - en
ID  - CRMATH_2011__349_5-6_309_0
ER  - 
%0 Journal Article
%A Graczyk, Jacek
%A Świa̧tek, Grzegorz
%T Asymptotically conformal similarity between Julia and Mandelbrot sets
%J Comptes Rendus. Mathématique
%D 2011
%P 309-314
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/
%R 10.1016/j.crma.2011.01.010
%G en
%F CRMATH_2011__349_5-6_309_0
Graczyk, Jacek; Świa̧tek, Grzegorz. Asymptotically conformal similarity between Julia and Mandelbrot sets. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 309-314. doi : 10.1016/j.crma.2011.01.010. http://www.numdam.org/articles/10.1016/j.crma.2011.01.010/

[1] Bruin, H. For almost every tent map, the turning point is typical, Fund. Math., Volume 155 (1998) no. 3, pp. 215-235

[2] Bruin, H.; Keller, G.; Nowicki, T.; van Strien, S. Wild Cantor attractors exist, Ann. of Math. (2), Volume 143 (1996) no. 1, pp. 97-130

[3] Carleson, L.; Jones, P.; Yoccoz, J.-C. Julia and John, Bol. Soc. Bras. Mat., Volume 25 (1994), pp. 1-30

[4] Douady, A.; Hubbard, J.H. On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. (Paris), Volume 18 (1985), pp. 287-343

[5] Fatou, P. Bull. Soc. Math. France, 51 (1923), p. 22

[6] Graczyk, J.; Smirnov, S. Collet, Eckmann, & Hölder, Invent. Math., Volume 133 (1998), pp. 69-96

[7] Graczyk, J.; Świa̧tek, G. The Real Fatou Conjecture, Ann. of Math. Stud., Princeton University Press, 1998

[8] Graczyk, J.; Świa̧tek, G. Harmonic measure and expansion on the boundary of the connectedness locus, Invent. Math., Volume 142 (2000) no. 3, pp. 605-629

[9] J. Graczyk, G. Świa̧tek, Fine structure of the Mandelbrot set, manuscript.

[10] M. Herman, Problems on complex dynamics, manuscript, 1987.

[11] Pommerenke, Ch. Boundary Behavior of Conformal Maps, Springer-Verlag, New York, 1992

[12] Rivera-Letelier, J. On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math., Volume 170 (2001), pp. 287-317

[13] Shishikura, M. Topological, geometric and complex analytic properties of Julia sets, Zürich, 1994, Birkhäuser, Basel (1995), pp. 886-895

[14] Shishikura, M. The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math., Volume 147 (1998), pp. 225-267

[15] Smirnov, S. Symbolic dynamics and Collet–Eckmann conditions, Int. Math. Res. Not., Volume 7 (2000), pp. 333-351

[16] Tan, L. Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys., Volume 134 (1990) no. 3, pp. 587-617

Cité par Sources :

Partially supported by Research Training Network CODY.