En presque tout point c par rapport à la mesure harmonique, le lieu de connectivité
An almost conformal local similarity between the connectedness locus
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_309_0, author = {Graczyk, Jacek and \'Swia̧tek, Grzegorz}, title = {Asymptotically conformal similarity between {Julia} and {Mandelbrot} sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {309--314}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.010}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2011.01.010/} }
TY - JOUR AU - Graczyk, Jacek AU - Świa̧tek, Grzegorz TI - Asymptotically conformal similarity between Julia and Mandelbrot sets JO - Comptes Rendus. Mathématique PY - 2011 SP - 309 EP - 314 VL - 349 IS - 5-6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.01.010/ DO - 10.1016/j.crma.2011.01.010 LA - en ID - CRMATH_2011__349_5-6_309_0 ER -
%0 Journal Article %A Graczyk, Jacek %A Świa̧tek, Grzegorz %T Asymptotically conformal similarity between Julia and Mandelbrot sets %J Comptes Rendus. Mathématique %D 2011 %P 309-314 %V 349 %N 5-6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.01.010/ %R 10.1016/j.crma.2011.01.010 %G en %F CRMATH_2011__349_5-6_309_0
Graczyk, Jacek; Świa̧tek, Grzegorz. Asymptotically conformal similarity between Julia and Mandelbrot sets. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 309-314. doi : 10.1016/j.crma.2011.01.010. https://www.numdam.org/articles/10.1016/j.crma.2011.01.010/
[1] For almost every tent map, the turning point is typical, Fund. Math., Volume 155 (1998) no. 3, pp. 215-235
[2] Wild Cantor attractors exist, Ann. of Math. (2), Volume 143 (1996) no. 1, pp. 97-130
[3] Julia and John, Bol. Soc. Bras. Mat., Volume 25 (1994), pp. 1-30
[4] On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. (Paris), Volume 18 (1985), pp. 287-343
[5] Bull. Soc. Math. France, 51 (1923), p. 22
[6] Collet, Eckmann, & Hölder, Invent. Math., Volume 133 (1998), pp. 69-96
[7] The Real Fatou Conjecture, Ann. of Math. Stud., Princeton University Press, 1998
[8] Harmonic measure and expansion on the boundary of the connectedness locus, Invent. Math., Volume 142 (2000) no. 3, pp. 605-629
[9] J. Graczyk, G. Świa̧tek, Fine structure of the Mandelbrot set, manuscript.
[10] M. Herman, Problems on complex dynamics, manuscript, 1987.
[11] Boundary Behavior of Conformal Maps, Springer-Verlag, New York, 1992
[12] On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math., Volume 170 (2001), pp. 287-317
[13] Topological, geometric and complex analytic properties of Julia sets, Zürich, 1994, Birkhäuser, Basel (1995), pp. 886-895
[14] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math., Volume 147 (1998), pp. 225-267
[15] Symbolic dynamics and Collet–Eckmann conditions, Int. Math. Res. Not., Volume 7 (2000), pp. 333-351
[16] Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys., Volume 134 (1990) no. 3, pp. 587-617
Cité par Sources :
☆ Partially supported by Research Training Network CODY.