Nous développons un point de vue de théorie de l'information sur certains problèmes de géométrie des convexes, fournissant par exemple une nouvelle propriété d'équipartition des mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l'entropie de mesures log-concaves, une formulation entropique de la conjecture de l'hyperplan, et une nouvelle inégalité inverse concernant l'entropie exponentielle pour des mesures log-concaves, analogue à l'inégalité inverse Brunn–Minkowski due à V. Milman.
We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman's reverse Brunn–Minkowski inequality.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_201_0, author = {Bobkov, Sergey and Madiman, Mokshay}, title = {Dimensional behaviour of entropy and information}, journal = {Comptes Rendus. Math\'ematique}, pages = {201--204}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.008/} }
TY - JOUR AU - Bobkov, Sergey AU - Madiman, Mokshay TI - Dimensional behaviour of entropy and information JO - Comptes Rendus. Mathématique PY - 2011 SP - 201 EP - 204 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.008/ DO - 10.1016/j.crma.2011.01.008 LA - en ID - CRMATH_2011__349_3-4_201_0 ER -
%0 Journal Article %A Bobkov, Sergey %A Madiman, Mokshay %T Dimensional behaviour of entropy and information %J Comptes Rendus. Mathématique %D 2011 %P 201-204 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.008/ %R 10.1016/j.crma.2011.01.008 %G en %F CRMATH_2011__349_3-4_201_0
Bobkov, Sergey; Madiman, Mokshay. Dimensional behaviour of entropy and information. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 201-204. doi : 10.1016/j.crma.2011.01.008. http://www.numdam.org/articles/10.1016/j.crma.2011.01.008/
[1] Logarithmically concave functions and sections of convex sets in , Studia Math., Volume 88 (1988) no. 1, pp. 69-84
[2] K.M. Ball, Information decrease along semigroups, Talk given at conference on Banach Spaces and Convex Geometric Analysis, Universität Kiel, Germany, April 2003.
[3] S.G. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions, Ann. Probab., in press, . | arXiv
[4] The entropy per coordinate of a random vector is highly constrained under convexity conditions (preprint) | arXiv
[5] S.G. Bobkov, M. Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures, preprint.
[6] On high-dimensional maximal functions associated to convex bodies, Amer. J. Math., Volume 108 (1986) no. 6, pp. 1467-1476
[7] Information-theoretic inequalities, IEEE Trans. Inform. Theory, Volume 37 (1991) no. 6, pp. 1501-1518
[8] On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., Volume 16 (2006) no. 6, pp. 1274-1290
[9] Geometry of log-concave functions and measures, Geom. Dedicata, Volume 112 (2005), pp. 169-182
[10] M. Madiman, On the entropy of sums, in: Proc. IEEE Inform. Theory Workshop, Porto, Portugal, 2008, pp. 303–307.
[11] Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 1, pp. 25-28
[12] Isomorphic symmetrizations and geometric inequalities, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 107-131
[13] Entropy point of view on some geometric inequalities, C. R. Acad. Sci. Paris Sér. I Math., Volume 306 (1988) no. 14, pp. 611-615
[14] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989
[15] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 101-112
Cité par Sources :