Nous proposons une démonstration élémentaire d'une conjoncture de Kontsevich qui affirme que l'itération de l'application non-commutative rationnelle est donnée par des polynômes de Laurent non-commutatifs.
We give an elementary proof of the Kontsevich conjecture that asserts that the iterations of the noncommutative rational map are given by noncommutative Laurent polynomials.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_119_0, author = {Berenstein, Arkady and Retakh, Vladimir}, title = {A short proof of {Kontsevich's} cluster conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--122}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.004/} }
TY - JOUR AU - Berenstein, Arkady AU - Retakh, Vladimir TI - A short proof of Kontsevich's cluster conjecture JO - Comptes Rendus. Mathématique PY - 2011 SP - 119 EP - 122 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.004/ DO - 10.1016/j.crma.2011.01.004 LA - en ID - CRMATH_2011__349_3-4_119_0 ER -
%0 Journal Article %A Berenstein, Arkady %A Retakh, Vladimir %T A short proof of Kontsevich's cluster conjecture %J Comptes Rendus. Mathématique %D 2011 %P 119-122 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.004/ %R 10.1016/j.crma.2011.01.004 %G en %F CRMATH_2011__349_3-4_119_0
Berenstein, Arkady; Retakh, Vladimir. A short proof of Kontsevich's cluster conjecture. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 119-122. doi : 10.1016/j.crma.2011.01.004. http://www.numdam.org/articles/10.1016/j.crma.2011.01.004/
[1] Quantum cluster algebras, Adv. Math., Volume 195 (2005) no. 2, pp. 405-455
[2] Cluster algebras III: Upper and lower bounds, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52
[3] Discrete non-commutative integrability: Proof of a conjecture by M. Kontsevich, Int. Math. Res. Not. (2010), pp. 4042-4063
[4] Cluster algebras I: Foundations, J. Amer. Math. Soc., Volume 15 (2002), pp. 497-529
[5] The Laurent phenomenon, Adv. in Appl. Math., Volume 28 (2002) no. 2, pp. 119-144
[6] Cluster algebras II: Finite type classification, Invent. Math., Volume 154 (2003), pp. 63-121
[7] Free Rings and Their Relations, Academic Press, London, 1985
[8] Non-commutative cluster mutations, Dokl. Nat. Acad. Sci. Belarus, Volume 53 (2009) no. 4, pp. 27-29
[9] A. Usnich, Non-commutative Laurent phenomenon for two variables, preprint, , 2010. | arXiv
Cité par Sources :
☆ The authors were supported in part by the NSF grant DMS #0800247.