Le calcul de la norme des opérateurs du type intégrales singulières est connu seulement dans très peu de cas. Le cas le plus célèbre est celui de la transformation de martingale dans trouvée par Burkholder égale à . Outre des résultats de Pichorides (1972) [6], on peut signaler un résultat de Choi (1988) [3] et un calcul récent de par Nazarov et Volberg (2003) [5], Banuelos et Janakiraman (2008) [1], et par Geiss, Montgomery-Smith et Saksman (2010) [4]. Les transformées de Riesz sur sont notées et . La note est consacrée à un résultat qui donne la norme dʼune certaine perturbation de .
Let be a real martingale difference in , where , and . We obtain the following generalization of Burkholderʼs famous result. If and then
Accepté le :
Publié le :
@article{CRMATH_2011__349_5-6_303_0, author = {Boros, Nicholas and Janakiraman, Prabhu and Volberg, Alexander}, title = {Sharp $ {L}^{p}$-bounds for a perturbation of {Burkholder's} {Martingale} {Transform}}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--307}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2011.01.001/} }
TY - JOUR AU - Boros, Nicholas AU - Janakiraman, Prabhu AU - Volberg, Alexander TI - Sharp $ {L}^{p}$-bounds for a perturbation of Burkholderʼs Martingale Transform JO - Comptes Rendus. Mathématique PY - 2011 SP - 303 EP - 307 VL - 349 IS - 5-6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2011.01.001/ DO - 10.1016/j.crma.2011.01.001 LA - en ID - CRMATH_2011__349_5-6_303_0 ER -
%0 Journal Article %A Boros, Nicholas %A Janakiraman, Prabhu %A Volberg, Alexander %T Sharp $ {L}^{p}$-bounds for a perturbation of Burkholderʼs Martingale Transform %J Comptes Rendus. Mathématique %D 2011 %P 303-307 %V 349 %N 5-6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2011.01.001/ %R 10.1016/j.crma.2011.01.001 %G en %F CRMATH_2011__349_5-6_303_0
Boros, Nicholas; Janakiraman, Prabhu; Volberg, Alexander. Sharp $ {L}^{p}$-bounds for a perturbation of Burkholderʼs Martingale Transform. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 303-307. doi : 10.1016/j.crma.2011.01.001. http://www.numdam.org/articles/10.1016/j.crma.2011.01.001/
[1] -bounds for the Beurling–Ahlfors transform, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 3603-3612
[2] Boundary value problems and sharp estimates for the martingale transforms, Ann. Probab., Volume 12 (1984), pp. 647-702
[3] Some sharp inequalities for martingale transforms, Trans. Amer. Math. Soc., Volume 307 (1988), pp. 279-300
[4] On singular integral and martingale transforms, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 553-575
[5] Heating the Beurling operator and estimates of its norms, St. Petersburg Math. J., Volume 14 (2003) no. 3
[6] On the best value of the constants in the theorems of Riesz, Zygmund, and Kolmogorov, Studia Math., Volume 44 (1972), pp. 165-179
[7] V. Vasyunin, A. Volberg, The Bellman function technique in harmonic analysis, sashavolberg.wordpress.com.
[8] Burkholderʼs function via Monge–Ampère equation, 2010 | arXiv
Cité par Sources :