[Les hyperharmoniques sont-ils entiers ? Une réponse partielle via les petits intervalles contenant des nombres premiers]
Dans un travail antérieur, les auteurs ont utilisé le postulat de Bertrand pour répondre, partiellement, à la conjecture de Mező selon laquelle les nombres hyperharmoniques – itérations de sommes partielles de nombres harmoniques – ne sont pas des entiers. Dans cette Note, nous montrons qu'une grande classe de nombres hyperharmoniques ne sont pas des entiers en utilisant les petits intervalles contenant des nombres premiers.
In a recent work, the authors have used Bertrand's postulate to give a partial answer to the conjecture of Mező which says that the hyperharmonic numbers – iterations of partial sums of harmonic numbers – are not integers. In this Note, using small intervals containing prime numbers, we prove that a great class of hyperharmonic numbers are not integers.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_115_0, author = {A{\"\i}t Amrane, Rachid and Belbachir, Hac\`ene}, title = {Are the hyperharmonics integral? {A} partial answer via the small intervals containing primes}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--117}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.12.015}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.015/} }
TY - JOUR AU - Aït Amrane, Rachid AU - Belbachir, Hacène TI - Are the hyperharmonics integral? A partial answer via the small intervals containing primes JO - Comptes Rendus. Mathématique PY - 2011 SP - 115 EP - 117 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.12.015/ DO - 10.1016/j.crma.2010.12.015 LA - en ID - CRMATH_2011__349_3-4_115_0 ER -
%0 Journal Article %A Aït Amrane, Rachid %A Belbachir, Hacène %T Are the hyperharmonics integral? A partial answer via the small intervals containing primes %J Comptes Rendus. Mathématique %D 2011 %P 115-117 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.12.015/ %R 10.1016/j.crma.2010.12.015 %G en %F CRMATH_2011__349_3-4_115_0
Aït Amrane, Rachid; Belbachir, Hacène. Are the hyperharmonics integral? A partial answer via the small intervals containing primes. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 115-117. doi : 10.1016/j.crma.2010.12.015. http://www.numdam.org/articles/10.1016/j.crma.2010.12.015/
[1] Non-integerness of class of hyperharmonic numbers, Ann. Mathematicae et Informaticae, Volume 37 (2010), pp. 7-11
[2] Prime numbers in logarithmic intervals, 17 Sept. 2008 | arXiv
[3] The Book of Numbers, Springer-Verlag, New York, 1996
[4] The generalization and proof of Bertrand's Postulate, Internat. J. Math. & Math. Sci., Volume 10 (1987) no. 4, pp. 821-824
[5] Almost all short intervals containing prime numbers, Acta Arith., Volume LXXVLI (1996)
[6] On the interval containing at least one prime number, Proc. Japan Acad., Volume 28 (1952), pp. 177-181
[7] About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budapest, Sect. Math., Volume 50 (2007), pp. 13-20
[8] Short effective intervals containing primes, J. Number Theory, Volume 98 (2003), pp. 10-33
[9] Sharper bounds for the Chebyshev functions and . II, Math. Comp., Volume 30 (1976) no. 134, pp. 337-360
[10] Bemerkung über die harmonische Reihe, Monatsch. Math. Phys., Volume 26 (1915), pp. 132-134
Cité par Sources :