Soient des vecteurs aléatoires indépendants centrés, de matrice de covariance l'identité et à densité log-concave. On démontre qu'avec une grande probabilité, on a
Let be independent centered random vectors with log-concave distribution and with the identity as covariance matrix. We show that with overwhelming probability one has
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_195_0, author = {Adamczak, Rados{\l}aw and Litvak, Alexander E. and Pajor, Alain and Tomczak-Jaegermann, Nicole}, title = {Sharp bounds on the rate of convergence of the empirical covariance matrix}, journal = {Comptes Rendus. Math\'ematique}, pages = {195--200}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.12.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.014/} }
TY - JOUR AU - Adamczak, Radosław AU - Litvak, Alexander E. AU - Pajor, Alain AU - Tomczak-Jaegermann, Nicole TI - Sharp bounds on the rate of convergence of the empirical covariance matrix JO - Comptes Rendus. Mathématique PY - 2011 SP - 195 EP - 200 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.12.014/ DO - 10.1016/j.crma.2010.12.014 LA - en ID - CRMATH_2011__349_3-4_195_0 ER -
%0 Journal Article %A Adamczak, Radosław %A Litvak, Alexander E. %A Pajor, Alain %A Tomczak-Jaegermann, Nicole %T Sharp bounds on the rate of convergence of the empirical covariance matrix %J Comptes Rendus. Mathématique %D 2011 %P 195-200 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.12.014/ %R 10.1016/j.crma.2010.12.014 %G en %F CRMATH_2011__349_3-4_195_0
Adamczak, Radosław; Litvak, Alexander E.; Pajor, Alain; Tomczak-Jaegermann, Nicole. Sharp bounds on the rate of convergence of the empirical covariance matrix. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 195-200. doi : 10.1016/j.crma.2010.12.014. http://www.numdam.org/articles/10.1016/j.crma.2010.12.014/
[1] Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, J. Amer. Math. Soc., Volume 234 (2010), pp. 535-561
[2] Random points in the unit ball of , Positivity, Volume 10 (2006), pp. 755-759
[3] Sampling convex bodies: a random matrix approach, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 1293-1303
[4] Limit of the smallest eigenvalue of a large dimensional sample covariance matrix, Ann. Probab., Volume 21 (1993), pp. 1275-1294
[5] Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom., Volume 13 (1995) no. 3–4, pp. 541-559
[6] Random walks and volume algorithm for convex bodies, Random Structures Algorithms, Volume 2 (1997) no. 1, pp. 1-50
[7] Concentration of mass on convex bodies, Geom. Funct. Anal., Volume 16 (2006) no. 5, pp. 1021-1049
Cité par Sources :
☆ The research was conducted while the authors participated in the Thematic Program on Asymptotic Geometric Analysis at the Fields Institute in Toronto in Fall 2010.