Partial Differential Equations
On the regularity of capillary water waves with vorticity
[Sur la regularité des ondes progressive périodiques avec vorticité]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 171-173.

Nous étudions la regularité des lignes de courant et des ondes progressive périodiques avec tension superficielle pour le problème d'écoulement rotationnel de l'eau à surface libre.

We study the regularity of the streamlines and of the free-surface in a capillary water flow with underlying currents.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.12.013
Henry, David 1

1 School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland
@article{CRMATH_2011__349_3-4_171_0,
     author = {Henry, David},
     title = {On the regularity of capillary water waves with vorticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {171--173},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.12.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.013/}
}
TY  - JOUR
AU  - Henry, David
TI  - On the regularity of capillary water waves with vorticity
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 171
EP  - 173
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.12.013/
DO  - 10.1016/j.crma.2010.12.013
LA  - en
ID  - CRMATH_2011__349_3-4_171_0
ER  - 
%0 Journal Article
%A Henry, David
%T On the regularity of capillary water waves with vorticity
%J Comptes Rendus. Mathématique
%D 2011
%P 171-173
%V 349
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.12.013/
%R 10.1016/j.crma.2010.12.013
%G en
%F CRMATH_2011__349_3-4_171_0
Henry, David. On the regularity of capillary water waves with vorticity. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 171-173. doi : 10.1016/j.crma.2010.12.013. http://www.numdam.org/articles/10.1016/j.crma.2010.12.013/

[1] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., Volume 12 (1959), pp. 623-727

[2] Constantin, A.; Escher, J. Analyticity of periodic travelling free surface water waves with vorticity, Ann. of Math., Volume 172 (2010)

[3] Constantin, A.; Strauss, W. Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., Volume 57 (2004), pp. 481-527

[4] Craig, W.; Matei, A.-M. On the regularity of the Neumann problem for the free surfaces with surface tension, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2497-2504

[5] Crapper, G.D. An exact solution for progressive capillary waves of arbitrary amplitude, J. Fluid Mech., Volume 2 (1957), pp. 532-540

[6] Henry, D. Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity, SIAM J. Math. Anal., Volume 42 (2010) no. 6, pp. 3103-3111

[7] D. Henry, Regularity for steady periodic capillary water waves with vorticity, submited for publication.

[8] H.-C. Hsu, C.-O. Ng, H.-H. Hwung, A new Lagrangian asymptotic solution for gravity-capillary waves in water of finite depth, J. Math. Fluid Mech., available online, , in press. | DOI

[9] Kinderlehrer, D.; Nirenberg, L.; Spruck, J. Regularity in elliptic free boundary problems, J. Anal. Math., Volume 34 (1978), pp. 86-119

[10] Kinnersley, W. Exact large amplitude capillary waves on sheets of fluid, J. Fluid Mech., Volume 77 (1976), pp. 229-241

[11] Kinsman, B. Wind Waves, Prentice-Hall, New Jersey, 1965

[12] Lewy, H. A note on harmonic functions and a hydrodynamical application, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 111-113

[13] Lighthill, J. Waves in Fluids, Cambridge University Press, Cambridge, 1978

[14] Matei, A.-M. The Neumann problem for free boundaries in two dimensions, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 597-602

[15] B.V. Matioc, Analyticity of the streamlines for periodic travelling water waves with bounded vorticity, Int. Math. Res. Notices (2010), , in press. | DOI

[16] Wahlén, E. Steady periodic capillary waves with vorticity, Ark. Mat., Volume 44 (2006), pp. 367-387

[17] S. Walsh, Steady periodic capillary-gravity waves with surface tension, 2009, preprint.

Cité par Sources :