Nous identifions le comportement macroscopique d'une feuille de graphène modélisée par un réseau hexagonal de barres élastiques. Nous utilisons pour cela les techniques de la Γ-convergence.
We characterize the macroscopic effective behavior of a graphene sheet modeled by a hexagonal lattice of elastic bars, using Γ-convergence.
Accepté le :
Publié le :
@article{CRMATH_2011__349_1-2_111_0, author = {Le Dret, Herv\'e and Raoult, Annie}, title = {Homogenization of hexagonal lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--114}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.12.012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.012/} }
TY - JOUR AU - Le Dret, Hervé AU - Raoult, Annie TI - Homogenization of hexagonal lattices JO - Comptes Rendus. Mathématique PY - 2011 SP - 111 EP - 114 VL - 349 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.12.012/ DO - 10.1016/j.crma.2010.12.012 LA - en ID - CRMATH_2011__349_1-2_111_0 ER -
Le Dret, Hervé; Raoult, Annie. Homogenization of hexagonal lattices. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 111-114. doi : 10.1016/j.crma.2010.12.012. http://www.numdam.org/articles/10.1016/j.crma.2010.12.012/
[1] A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., Volume 36 (2004) no. 1, pp. 1-37
[2] From Discrete to Continuum: A Variational Approach, Lecture Notes, SISSA, Trieste, 2000
[3] Discrete homogenization in graphene sheet modeling, J. Elasticity, Volume 84 (2006), pp. 33-68
[4] Cauchy–Born rule and the stability of crystalline solids: Static problems, Arch. Rational Mech. Anal., Volume 183 (2007), pp. 241-297
[5] Geometric Crystallography, Kluwer Academic Publishers, 1986
[6] Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., Volume 12 (2002), pp. 445-478
[7] Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., Volume IV (1978) no. CXVII, pp. 139-152
[8] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., Volume 99 (1987) no. 3, pp. 189-212
[9] Elastic lattices: Equilibrium, invariant laws and homogenization, Ann. Univ. Ferrara, Volume 54 (2008), pp. 297-318
Cité par Sources :