Nous introduisons les sommes multiples de Dedekind–Rademacher, écrites en termes de valeurs des fonctions de Bernoulli. Ses sommes généralisent les sommes classiques de Dedekind–Rademacher. Dans ce travail, nous avons établi une loi de réciprocité pour ces sommes. Notre résultat unifie et généralise tous les résultats connus sur les sommes de Dedekind–Rademacher.
We introduce multiple Dedekind–Rademacher sums, in terms of values of Bernoulli functions, that generalize the classical Dedekind–Rademacher sums. The aim of this paper is to give and prove a reciprocity law for these sums. The main theorem presented in this paper contains all previous results in the literature about Dedekind–Rademacher sums.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_131_0, author = {Bayad, Abdelmejid and Raouj, Abdelaziz}, title = {Reciprocity formulae for multiple {Dedekind{\textendash}Rademacher} sums}, journal = {Comptes Rendus. Math\'ematique}, pages = {131--136}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.12.011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.011/} }
TY - JOUR AU - Bayad, Abdelmejid AU - Raouj, Abdelaziz TI - Reciprocity formulae for multiple Dedekind–Rademacher sums JO - Comptes Rendus. Mathématique PY - 2011 SP - 131 EP - 136 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.12.011/ DO - 10.1016/j.crma.2010.12.011 LA - en ID - CRMATH_2011__349_3-4_131_0 ER -
%0 Journal Article %A Bayad, Abdelmejid %A Raouj, Abdelaziz %T Reciprocity formulae for multiple Dedekind–Rademacher sums %J Comptes Rendus. Mathématique %D 2011 %P 131-136 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.12.011/ %R 10.1016/j.crma.2010.12.011 %G en %F CRMATH_2011__349_3-4_131_0
Bayad, Abdelmejid; Raouj, Abdelaziz. Reciprocity formulae for multiple Dedekind–Rademacher sums. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 131-136. doi : 10.1016/j.crma.2010.12.011. http://www.numdam.org/articles/10.1016/j.crma.2010.12.011/
[1] The logarithm of the Dedekind η-function, Math. Ann., Volume 278 (1987), pp. 335-380
[2] Cocycles d'Euler et de Maslov, Math. Ann., Volume 294 (1992) no. 2, pp. 235-265
[3] Computing the Continuous Discretely Integer-Point Enumeration in Polyhedra, Springer, 2007
[4] Erläuterungen zu den Fragmenten XXVIII, B. Riemann's Gesammelte mathematische Werke, Teubner, Leipzig, 1892, pp. 466-478
[5] Dedekind Sums, Carus Mathematical Monographs, The Mathematical Association of America, 1972
[6] Reciprocity formulae for general Dedekind–Rademacher sums, Acta Arith., Volume 73 (1995) no. 4, pp. 389-396
[7] The signature theorem: Reminiscences and recreation, Prospects in Mathematics, Ann. of Math. Studies, vol. 70, Princeton University Press, Princeton, 1971, pp. 3-31
[8] The Atiyah–Singer Theorem and Elementary Number Theory, Math. Lecture Series, vol. 3, Publish or Perish Inc., 1974
[9] Dedekind sums, μ-invariants and the signature cocycle, Math. Annalen, Volume 299 (1994), pp. 231-267
[10] Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math., Volume 198 (1957), pp. 143-203
[11] Superconnections and the Chern character, Topology, Volume 40 (1985), pp. 89-95
[12] Zurüchführung eineger Summen und bestimmten Integrale auf die Jacob–Bernoullische Funktion, J. Reine Angew. Math., Volume 42 (1895), pp. 348-367
[13] Generalization of the reciprocity formula for Dedekind sums, Duke Math. J., Volume 21 (1954), pp. 391-397
[14] Eisensteinkohomologie und Dedekindsummen für über imaginär-quadratischen Zahlenkörpern, J. Reine Angew. Math., Volume 389 (1988), pp. 90-121
[15] Higher order Dedekind sums, Math. Ann., Volume 202 (1973), pp. 149-172
Cité par Sources :