Dans le cadre de la régression univariée, nous proposons un outil nonparamétrique général permettant de tester si une fonction connue m est un bon candidat pour la fonction de régression au vu des données. Ce test est basé sur la longueur maximale des suites ordonnées (par rapport à la covariable) des résidus de même signe. Aucune hypothèse n'est faite sur l'homoscédasticité des erreurs. De plus, ce test ne nécessite pas la présence de données répétées. Nous donnons ici la loi de la statistique test sous l'hypothèse nulle que la fonction considérée m est la vraie fonction de régression ainsi que sous une certaine classe d'hypothèses alternatives.
A simple test is proposed for examining the correctness of a given completely specified response function against unspecified general alternatives in the context of univariate regression. The usual diagnostic tools based on residual plots are useful but heuristic. We introduce a formal statistical test supplementing the graphical analysis. Technically, the test statistic is the maximum length of the sequences of ordered (with respect to the covariate) observations that are consecutively overestimated or underestimated by the candidate regression function. Note that the testing procedure can cope with heteroscedastic errors and no replicates. Recursive formulae allowing one to calculate the exact distribution of the test statistic under the null hypothesis and under a class of alternative hypotheses are given.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_215_0, author = {Aubin, Jean-Baptiste and Leoni-Aubin, Samuela}, title = {A nonparametric lack-of-fit test for heteroscedastic regression models}, journal = {Comptes Rendus. Math\'ematique}, pages = {215--217}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.12.009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/} }
TY - JOUR AU - Aubin, Jean-Baptiste AU - Leoni-Aubin, Samuela TI - A nonparametric lack-of-fit test for heteroscedastic regression models JO - Comptes Rendus. Mathématique PY - 2011 SP - 215 EP - 217 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/ DO - 10.1016/j.crma.2010.12.009 LA - en ID - CRMATH_2011__349_3-4_215_0 ER -
%0 Journal Article %A Aubin, Jean-Baptiste %A Leoni-Aubin, Samuela %T A nonparametric lack-of-fit test for heteroscedastic regression models %J Comptes Rendus. Mathématique %D 2011 %P 215-217 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/ %R 10.1016/j.crma.2010.12.009 %G en %F CRMATH_2011__349_3-4_215_0
Aubin, Jean-Baptiste; Leoni-Aubin, Samuela. A nonparametric lack-of-fit test for heteroscedastic regression models. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 215-217. doi : 10.1016/j.crma.2010.12.009. http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/
[1] Distribution-Free Statistical Tests, Prentice–Hall, 1968
[2] On the Erdos–Renyi theorem for random fields and sequences and its relationships with the theory of runs and spacings, Z. Wahrsch. Verw. Gebiete, Volume 70 (1985), pp. 91-115
[3] An extreme value theory for long head runs, Probab. Theory Related Fields, Volume 72 (1986), pp. 279-287
[4] Nonparametric Smoothing and Lack-of-Fit Tests, Springer-Verlag, New York, 1997
[5] A review of the development and application of recursive residuals in linear models, J. Amer. Statist. Assoc., Volume 91 (1996) no. 433, pp. 391-400
[6] Useful inequalities for the longest run distribution, Statist. Probab. Lett., Volume 46 (2000), pp. 239-249
[7] Testing for lack of fit in regression—A review, Comm. Statist. Theory Methods, Volume 13 (1984) no. 4, pp. 485-511
[8] An Introduction to Combinatorial Analysis, John Wiley and Sons, 1958
[9] The longest run of heads, College Math. J., Volume 21 (1990), pp. 196-207
Cité par Sources :