Statistics
A nonparametric lack-of-fit test for heteroscedastic regression models
[Un test d'adéquation nonparamétrique pour la régression]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 215-217.

Dans le cadre de la régression univariée, nous proposons un outil nonparamétrique général permettant de tester si une fonction connue m est un bon candidat pour la fonction de régression au vu des données. Ce test est basé sur la longueur maximale des suites ordonnées (par rapport à la covariable) des résidus de même signe. Aucune hypothèse n'est faite sur l'homoscédasticité des erreurs. De plus, ce test ne nécessite pas la présence de données répétées. Nous donnons ici la loi de la statistique test sous l'hypothèse nulle que la fonction considérée m est la vraie fonction de régression ainsi que sous une certaine classe d'hypothèses alternatives.

A simple test is proposed for examining the correctness of a given completely specified response function against unspecified general alternatives in the context of univariate regression. The usual diagnostic tools based on residual plots are useful but heuristic. We introduce a formal statistical test supplementing the graphical analysis. Technically, the test statistic is the maximum length of the sequences of ordered (with respect to the covariate) observations that are consecutively overestimated or underestimated by the candidate regression function. Note that the testing procedure can cope with heteroscedastic errors and no replicates. Recursive formulae allowing one to calculate the exact distribution of the test statistic under the null hypothesis and under a class of alternative hypotheses are given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.12.009
Aubin, Jean-Baptiste 1 ; Leoni-Aubin, Samuela 1

1 INSA Lyon, ICJ, 20, rue Albert-Einstein, 69621 Villeurbanne cedex, France
@article{CRMATH_2011__349_3-4_215_0,
     author = {Aubin, Jean-Baptiste and Leoni-Aubin, Samuela},
     title = {A nonparametric lack-of-fit test for heteroscedastic regression models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {215--217},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.12.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/}
}
TY  - JOUR
AU  - Aubin, Jean-Baptiste
AU  - Leoni-Aubin, Samuela
TI  - A nonparametric lack-of-fit test for heteroscedastic regression models
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 215
EP  - 217
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/
DO  - 10.1016/j.crma.2010.12.009
LA  - en
ID  - CRMATH_2011__349_3-4_215_0
ER  - 
%0 Journal Article
%A Aubin, Jean-Baptiste
%A Leoni-Aubin, Samuela
%T A nonparametric lack-of-fit test for heteroscedastic regression models
%J Comptes Rendus. Mathématique
%D 2011
%P 215-217
%V 349
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/
%R 10.1016/j.crma.2010.12.009
%G en
%F CRMATH_2011__349_3-4_215_0
Aubin, Jean-Baptiste; Leoni-Aubin, Samuela. A nonparametric lack-of-fit test for heteroscedastic regression models. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 215-217. doi : 10.1016/j.crma.2010.12.009. http://www.numdam.org/articles/10.1016/j.crma.2010.12.009/

[1] Bradley, J.V. Distribution-Free Statistical Tests, Prentice–Hall, 1968

[2] Deheuvels, P. On the Erdos–Renyi theorem for random fields and sequences and its relationships with the theory of runs and spacings, Z. Wahrsch. Verw. Gebiete, Volume 70 (1985), pp. 91-115

[3] Gordon, L.; Schilling, M.F.; Waterman, M.S. An extreme value theory for long head runs, Probab. Theory Related Fields, Volume 72 (1986), pp. 279-287

[4] Hart, J. Nonparametric Smoothing and Lack-of-Fit Tests, Springer-Verlag, New York, 1997

[5] Kianifard, F.; Swallow, W.H. A review of the development and application of recursive residuals in linear models, J. Amer. Statist. Assoc., Volume 91 (1996) no. 433, pp. 391-400

[6] Muselli, M. Useful inequalities for the longest run distribution, Statist. Probab. Lett., Volume 46 (2000), pp. 239-249

[7] Neill, J.W.; Johnson, D.E. Testing for lack of fit in regression—A review, Comm. Statist. Theory Methods, Volume 13 (1984) no. 4, pp. 485-511

[8] Riordan, J. An Introduction to Combinatorial Analysis, John Wiley and Sons, 1958

[9] Schilling, M.F. The longest run of heads, College Math. J., Volume 21 (1990), pp. 196-207

Cité par Sources :