On met en évidence l'existence de séries universelles à coefficients p-adiques en généralisant le théorème original de Fekete à .
We establish the analogue of the original Fekete Theorem in the context of p-adic analysis.
Accepté le :
Publié le :
@article{CRMATH_2011__349_1-2_39_0, author = {Mouze, Augustin}, title = {Universal \protect\emph{p}-adic series}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--42}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.12.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.12.006/} }
Mouze, Augustin. Universal p-adic series. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 39-42. doi : 10.1016/j.crma.2010.12.006. http://www.numdam.org/articles/10.1016/j.crma.2010.12.006/
[1] The Weierstrass–Stone approximation theorem for p-adic -functions, Ann. Math. Blaise Pascal, Volume 1 (1994) no. 1, pp. 61-74
[2] Abstract theory of universal series and applications, Proc. Lond. Math. Soc., Volume 96 (2008), pp. 417-463
[3] Approximation by overconvergence of power series, J. Math. Anal. Appl., Volume 36 (1971), pp. 693-696
[4] p-Adic Numbers. An Introduction, Universitext, Springer-Verlag, Berlin, 1997
[5] Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.), Volume 36 (1999) no. 3, pp. 345-381
[6] Baire's category theorem and trigonometric series, J. Anal. Math., Volume 80 (2000), pp. 143-182
[7] The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 356-357
[8] Universal Taylor series, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 5, pp. 1293-1306
[9] Approximation analytischer Funktionen durch uberkonvergente Potenzreihen und deren Matrix-Transformierten, Mitt. Math. Sem. Giessen, Volume 88 (1970), pp. 1-56
[10] Zwei kleine Bemerkungen, Tohoku Math. J., Volume 6 (1914/15), pp. 42-43
[11] A Course in p-Adic Analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag, New York, 2000
[12] On universal power series, Mat. Sb. (N.S.), Volume 28 (1951), pp. 453-460
Cité par Sources :