Probability Theory
Clark–Ocone type formula for non-semimartingales with finite quadratic variation
[Formule de Clark–Ocone generalisée pour des non-semimartingales à variation quadratique finie]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 209-214.

Nous présentons un cadre adéquat pour le concept de variation quadratique finie lorsque le processus de référence est à valeurs dans un espace de Banach séparable B. Le langage utilisé est celui de l'intégrale via régularisations introduit dans le cas réel par le second auteur et P. Vallois. À un processus réel continu X, nous associons le processus X(), appelé processus fenêtre, qui à l'instant t, garde en mémoire le passé jusqu'à tτ. L'espace naturel d'évolution pour X() est l'espace de Banach B des fonctions continues définies sur [τ,0]. Si X est un processus réel à variation quadratique finie, nous énonçons une formule d'Itô appropriée de laquelle nous déduisons une formule de Clark–Ocone relative à des non-semimartingales réelles ayant la même variation quadratique que le mouvement brownien. La représentation est basée sur des solutions d'une EDP infini-dimensionnelle.

We provide a suitable framework for the concept of finite quadratic variation for processes with values in a separable Banach space B using the language of stochastic calculus via regularizations, introduced in the case B=R by the second author and P. Vallois. To a real continuous process X we associate the Banach-valued process X(), called window process, which describes the evolution of X taking into account a memory τ>0. The natural state space for X() is the Banach space of continuous functions on [τ,0]. If X is a real finite quadratic variation process, an appropriated Itô formula is presented, from which we derive a generalized Clark–Ocone formula for non-semimartingales having the same quadratic variation as Brownian motion. The representation is based on solutions of an infinite-dimensional PDE.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.032
Di Girolami, Cristina 1, 2 ; Russo, Francesco 2, 3

1 Luiss Guido Carli – Libera Università Internazionale degli Studi Sociali Guido Carli di Roma, Viale Pola 12, 00198 Roma, Italy
2 ENSTA ParisTech, unité de mathématiques appliquées, 32, boulevard Victor, 75739 Paris cedex 15, France
3 INRIA Rocquencourt and Cermics École des ponts, projet MATHFI, domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
@article{CRMATH_2011__349_3-4_209_0,
     author = {Di Girolami, Cristina and Russo, Francesco},
     title = {Clark{\textendash}Ocone type formula for non-semimartingales with finite quadratic variation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {209--214},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.032},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.032/}
}
TY  - JOUR
AU  - Di Girolami, Cristina
AU  - Russo, Francesco
TI  - Clark–Ocone type formula for non-semimartingales with finite quadratic variation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 209
EP  - 214
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.032/
DO  - 10.1016/j.crma.2010.11.032
LA  - en
ID  - CRMATH_2011__349_3-4_209_0
ER  - 
%0 Journal Article
%A Di Girolami, Cristina
%A Russo, Francesco
%T Clark–Ocone type formula for non-semimartingales with finite quadratic variation
%J Comptes Rendus. Mathématique
%D 2011
%P 209-214
%V 349
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.032/
%R 10.1016/j.crma.2010.11.032
%G en
%F CRMATH_2011__349_3-4_209_0
Di Girolami, Cristina; Russo, Francesco. Clark–Ocone type formula for non-semimartingales with finite quadratic variation. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 209-214. doi : 10.1016/j.crma.2010.11.032. http://www.numdam.org/articles/10.1016/j.crma.2010.11.032/

[1] Coviello, R.; Russo, F. Nonsemimartingales: Stochastic differential equations and weak Dirichlet processes, Ann. Probab., Volume 35 (2007) no. 1, pp. 255-308

[2] Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992

[3] C. Di Girolami, F. Russo, Infinite dimensional stochastic calculus via regularization and applications, HAL-INRIA, preprint, 2010, http://hal.archives-ouvertes.fr/inria-00473947/fr/.

[4] Dinculeanu, N. Vector Integration and Stochastic Integration in Banach Spaces, Pure and Applied Mathematics (New York), Wiley–Interscience, New York, 2000

[5] Errami, M.; Russo, F. n-Covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl., Volume 104 (2003) no. 2, pp. 259-299

[6] Métivier, M.; Pellaumail, J. Stochastic Integration, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980

[7] Russo, F.; Vallois, P. Elements of stochastic calculus via regularization, Séminaire de Probabilités XL, Lecture Notes in Math., vol. 1899, Springer, Berlin, 2007, pp. 147-185

[8] Schoenmakers, J.G.M.; Kloeden, P.E. Robust option replication for a Black–Scholes model extended with nondeterministic trends, J. Appl. Math. Stochastic Anal., Volume 12 (1999) no. 2, pp. 113-120

Cité par Sources :