Les multiplicateurs considérés dans cette Note sont les opérateurs linéaires qui agissent diagonalement sur
In this Note we prove a new result about (finite) multiplier sequences, i.e. linear operators acting diagonally in the standard monomial basis of
Accepté le :
Publié le :
@article{CRMATH_2011__349_1-2_35_0, author = {Katkova, Olga and Shapiro, Boris and Vishnyakova, Anna}, title = {Multiplier sequences and logarithmic mesh}, journal = {Comptes Rendus. Math\'ematique}, pages = {35--38}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.031}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/} }
TY - JOUR AU - Katkova, Olga AU - Shapiro, Boris AU - Vishnyakova, Anna TI - Multiplier sequences and logarithmic mesh JO - Comptes Rendus. Mathématique PY - 2011 SP - 35 EP - 38 VL - 349 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/ DO - 10.1016/j.crma.2010.11.031 LA - en ID - CRMATH_2011__349_1-2_35_0 ER -
%0 Journal Article %A Katkova, Olga %A Shapiro, Boris %A Vishnyakova, Anna %T Multiplier sequences and logarithmic mesh %J Comptes Rendus. Mathématique %D 2011 %P 35-38 %V 349 %N 1-2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/ %R 10.1016/j.crma.2010.11.031 %G en %F CRMATH_2011__349_1-2_35_0
Katkova, Olga; Shapiro, Boris; Vishnyakova, Anna. Multiplier sequences and logarithmic mesh. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 35-38. doi : 10.1016/j.crma.2010.11.031. https://www.numdam.org/articles/10.1016/j.crma.2010.11.031/
[1] Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009) no. 1, pp. 465-492
[2] Problems and theorems in the theory of multiplier sequences, Serdica Math. J., Volume 22 (1996), pp. 515-524
[3] Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977) no. 4, pp. 801-817
[4] Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963
[5] Über zwei Arten von Faktorenfolgen in der Theorie der algebraische Gleichungen, J. Reine Angew. Math., Volume 144 (1914), pp. 89-113
[6] Sur un theoreme de M. Marcel Riesz, Nouv. Ann. Math., Volume 1 (1926), pp. 97-99
[7] Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. (2), Volume 13 (1922), pp. 28-55
Cité par Sources :