[Translatés de l'ensemble des nombres premiers, théorème de Szemerédi multidimensionnel et théorème de Van der Waerden polynomial multidimensionnel]
Nous présentons de nouveaux résultats du type Szemerédi multidimensionnel et Van der Waerden polynomial multidimensionnel le long des ensembles et .
In this short note we establish new refinements of multidimensional Szemerédi and polynomial Van der Waerden theorems along the shifted primes.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_123_0, author = {Bergelson, Vitaly and Leibman, Alexander and Ziegler, Tamar}, title = {The shifted primes and the multidimensional {Szemer\'edi} and polynomial {Van} der {Waerden} theorems}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--125}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.028/} }
TY - JOUR AU - Bergelson, Vitaly AU - Leibman, Alexander AU - Ziegler, Tamar TI - The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems JO - Comptes Rendus. Mathématique PY - 2011 SP - 123 EP - 125 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.11.028/ DO - 10.1016/j.crma.2010.11.028 LA - en ID - CRMATH_2011__349_3-4_123_0 ER -
%0 Journal Article %A Bergelson, Vitaly %A Leibman, Alexander %A Ziegler, Tamar %T The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems %J Comptes Rendus. Mathématique %D 2011 %P 123-125 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.11.028/ %R 10.1016/j.crma.2010.11.028 %G en %F CRMATH_2011__349_3-4_123_0
Bergelson, Vitaly; Leibman, Alexander; Ziegler, Tamar. The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 123-125. doi : 10.1016/j.crma.2010.11.028. http://www.numdam.org/articles/10.1016/j.crma.2010.11.028/
[1] Ergodic theory and Diophantine problems, Temuco, 1997 (London Math. Soc. Lecture Note Ser.), Volume vol. 279, Cambridge Univ. Press, Cambridge (2000), pp. 167-205
[2] Polynomial Van der Waerden and Szemerédi theorems, J. Amer. Math. Soc., Volume 9 (1996), pp. 725-753
[3] Set-polynomials and polynomial extension of the Hales–Jewett theorem, Ann. of Math. (2), Volume 150 (1999) no. 1, pp. 33-75
[4] Recurrence for semigroup actions and a non-commutative Schur theorem, Minneapolis, MN, 1995 (Contemp. Math.), Volume vol. 215, Amer. Math. Soc., Providence, RI (1998), pp. 205-222
[5] Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., Volume 611 (2007), pp. 131-144
[6] An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math., Volume 45 (1985), pp. 117-168
[7] Topological dynamics and combinatorial number theory, J. Anal. Math., Volume 34 (1978), pp. 61-85
[8] Linear equations in primes, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1753-1850
[9] B. Green, T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math., in press.
[10] B. Green, T. Tao, T. Ziegler, An inverse theorem for the Gowers norm, preprint.
[11] Elemental Methods in Ergodic Ramsey Theory, Lecture Notes in Math., vol. 1722, Springer-Verlag, Berlin, 1999
[12] T. Wooley, T. Ziegler, Multiple recurrence and convergence along the primes, Amer. J. Math., in press.
Cité par Sources :
☆ The first and the third authors are supported by BSF grant No. 2006094. The first and the second authors are supported by NSF grant DMS-0901106.