Dans cette Note, nous comparons l'espace VMO et les espaces
In this Note, we compare the space VMO and the spaces
Publié le :
@article{CRMATH_2011__349_3-4_157_0, author = {Brezis, Ha{\"\i}m and Nguyen, Hoai-Minh}, title = {On a new class of functions related to {\protect\emph{VMO}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--160}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.026/} }
TY - JOUR AU - Brezis, Haïm AU - Nguyen, Hoai-Minh TI - On a new class of functions related to VMO JO - Comptes Rendus. Mathématique PY - 2011 SP - 157 EP - 160 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.11.026/ DO - 10.1016/j.crma.2010.11.026 LA - en ID - CRMATH_2011__349_3-4_157_0 ER -
%0 Journal Article %A Brezis, Haïm %A Nguyen, Hoai-Minh %T On a new class of functions related to VMO %J Comptes Rendus. Mathématique %D 2011 %P 157-160 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.11.026/ %R 10.1016/j.crma.2010.11.026 %G en %F CRMATH_2011__349_3-4_157_0
Brezis, Haïm; Nguyen, Hoai-Minh. On a new class of functions related to VMO. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 157-160. doi : 10.1016/j.crma.2010.11.026. http://www.numdam.org/articles/10.1016/j.crma.2010.11.026/
[1] A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 75-80
[2] Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math., Volume 1 (1995), pp. 197-263
[3] H. Brezis, H.-M. Nguyen, On the distributional Jacobian of maps from into in fractional Sobolev and Hölder spaces, Ann. of Math., available online: 31 December 2009.
[4] On functions of bounded mean oscillation, Comm. Pure Appl. Math., Volume 14 (1961), pp. 415-426
[5] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006), pp. 689-720
[6] Optimal constant in a new estimate for the degree, J. d'Analyse Math., Volume 101 (2007), pp. 367-395
[7] H.-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations, published online: 12 October 2010, . | DOI
Cité par Sources :