Un sous-ensemble totalement dominant et extérieurement indépendant d'un graphe est un sous-ensemble D des sommets de G tel que chaque sommet de G ait un voisin dans D et l'ensemble soit indépendant. Le plus petit cardinal d'un tel sous-ensemble est noté . Nous démontrons que pour tout arbre T non trivial, d'ordre n avec l feuilles, nous avons . De plus, nous caractérisons les arbres réalisant cette borne inférieure.
A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbour in D, and the set is independent. The total outer-independent domination number of a graph G, denoted by , is the minimum cardinality of the total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have , and we characterize the trees attaining this lower bound.
Accepté le :
Publié le :
@article{CRMATH_2011__349_1-2_7_0, author = {Krzywkowski, Marcin}, title = {A lower bound on the total outer-independent domination number of a tree}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--9}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.021}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.021/} }
TY - JOUR AU - Krzywkowski, Marcin TI - A lower bound on the total outer-independent domination number of a tree JO - Comptes Rendus. Mathématique PY - 2011 SP - 7 EP - 9 VL - 349 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.11.021/ DO - 10.1016/j.crma.2010.11.021 LA - en ID - CRMATH_2011__349_1-2_7_0 ER -
%0 Journal Article %A Krzywkowski, Marcin %T A lower bound on the total outer-independent domination number of a tree %J Comptes Rendus. Mathématique %D 2011 %P 7-9 %V 349 %N 1-2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.11.021/ %R 10.1016/j.crma.2010.11.021 %G en %F CRMATH_2011__349_1-2_7_0
Krzywkowski, Marcin. A lower bound on the total outer-independent domination number of a tree. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 7-9. doi : 10.1016/j.crma.2010.11.021. http://www.numdam.org/articles/10.1016/j.crma.2010.11.021/
[1] A note on the total domination number of a tree, J. Combin. Math. Combin. Comput., Volume 58 (2006), pp. 189-193
[2] Total domination in graphs, Networks, Volume 10 (1980), pp. 211-219
[3] Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998
[4] Domination in Graphs: Advanced Topics (Haynes, T.; Hedetniemi, S.; Slater, P., eds.), Marcel Dekker, New York, 1998
[5] M. Krzywkowski, Total outer-independent domination in graphs, submitted for publication.
Cité par Sources :