Analytic Geometry/Automation (theoretical)
A toric Positivstellensatz with applications to delay systems
Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 327-329.

La structure des polynômes positifs sur un tore est déduite à lʼaide de deux théorèmes récents de type Positivstellensatz. Comme application, on propose des conditions simples pour vérifier lʼhyperbolicité/stabilité dʼun système linéaire générique dʼéquations différentielles de type retardé.

The structure of positive polynomials on a torus is derived from recent results of real algebraic geometry. As an application, we propose some simple conditions for testing the hyperbolicity/stability of a generic class of linear systems of retarded type.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.018
Niculescu, Silviu-Iulian 1 ; Putinar, Mihai 2

1 Laboratoire des signaux et systèmes (UMR CNRS 8506), 3, rue Joliot-Curie, 91192 Gif-sur-Yvette, France
2 Mathematics Department, University of California, Santa Barbara, CA 93106, USA
@article{CRMATH_2011__349_5-6_327_0,
     author = {Niculescu, Silviu-Iulian and Putinar, Mihai},
     title = {A toric {Positivstellensatz} with applications to delay systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {327--329},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.018/}
}
TY  - JOUR
AU  - Niculescu, Silviu-Iulian
AU  - Putinar, Mihai
TI  - A toric Positivstellensatz with applications to delay systems
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 327
EP  - 329
VL  - 349
IS  - 5-6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.018/
DO  - 10.1016/j.crma.2010.11.018
LA  - en
ID  - CRMATH_2011__349_5-6_327_0
ER  - 
%0 Journal Article
%A Niculescu, Silviu-Iulian
%A Putinar, Mihai
%T A toric Positivstellensatz with applications to delay systems
%J Comptes Rendus. Mathématique
%D 2011
%P 327-329
%V 349
%N 5-6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.018/
%R 10.1016/j.crma.2010.11.018
%G en
%F CRMATH_2011__349_5-6_327_0
Niculescu, Silviu-Iulian; Putinar, Mihai. A toric Positivstellensatz with applications to delay systems. Comptes Rendus. Mathématique, Tome 349 (2011) no. 5-6, pp. 327-329. doi : 10.1016/j.crma.2010.11.018. http://www.numdam.org/articles/10.1016/j.crma.2010.11.018/

[1] Fliess, M.; Mounier, H. Quelques propriétés structurelles des systèmes linéaires à retards constants, C. R. Acad. Sci. Paris, Ser. I, Volume 319 (1994), pp. 289-294

[2] Gu, K.; Kharitonov, V.L.; Chen, J. Stability and Robust Stability of Time-Delay Systems, Birkhauser, Boston, 2003

[3] Hale, J.K.; Infante, E.F.; Tsen, F.S.-P. Stability in linear delay equations, J. Math. Anal. Appl., Volume 105 (1985), pp. 533-555

[4] Positive Polynomials in Control (Henrion, D.; Garulli, A., eds.), LNCIS, Springer, Heidelberg, 2005

[5] Hertz, D.; Jury, E.I.; Zeheb, E. Root exclusion from complex polydomains and some of its applications, Automatica, Volume 23 (1987), pp. 399-404

[6] Kamen, E.W. On the relationship between zero criteria for two-variable polynomials and asymptotic stability of delay differential equations, IEEE Trans. Automat. Contr., Volume AC-25 (1980), pp. 983-984

[7] E.W. Kamen, Lectures on algebraic system theory: linear systems over rings, NASA contractor report 3016, 1978.

[8] Lasserre, J.B. Global optimization with polynomials and the problem of moments, SIAM J. Optim., Volume 11 (2001), pp. 796-817

[9] Lasserre, J.B.; Putinar, M. Positivity and optimization for semi-algebraic functions, SIAM J. Optim., Volume 20 (2010) no. 6, pp. 3364-3383

[10] J.B. Lasserre, M. Putinar, Positivity and optimization: beyond polynomials, in: M. Anjos, J.-B. Lasserre (Eds.), Handbook on Semidefinite, Cone and Polynomial Optimization, Springer Verlag, Berlin, in press.

[11] Michiels, W.; Niculescu, S.-I. Stability and Stabilization of Time-Delay Systems. An Eigenvalue Based Approach, SIAM, Philadelphia, 2007

[12] Niculescu, S.-I. Stability and hyperbolicity of linear systems with delayed state: a matrix pencil approach, IMA J. Math. Control Inform., Volume 15 (1998), pp. 331-347

[13] Nie, J.; Schweighofer, M. On the complexity of Putinarʼs Positivstellensatz, J. Complexity, Volume 23 (2007) no. 1, pp. 135-150

[14] Olgac, N.; Sipahi, R. An exact method for the stability analysis of time-delayed LTI systems, IEEE Trans. Automat. Control, Volume 47 (2002), pp. 793-797

[15] Prestel, A.; Delzell, C. Positive Polynomials, Springer, Berlin, 2001

[16] Putinar, M. Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993), pp. 969-984

[17] Emerging Applications of Algebraic Geometry (Putinar, M.; Sullivant, S., eds.), IMA Series Applied Math., Springer, Berlin, 2008

[18] Stengle, G. A Nullstellensatz and a Positivstellensatz in semi-algebraic geometry, Math. Ann., Volume 207 (1974), pp. 87-97

[19] Toker, O.; Özbay, H. Complexity issues in robust stability of linear delay-differential systems, Math. Control Signals Systems, Volume 9 (1996), pp. 386-400

Cité par Sources :

Partially supported by CNRS, France and the National Science Foundation, USA.