Logic
Regularity theory for pluriclosed flow
[Théorie de la régularité pour un flot multifermé]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 1-4.

Dans Streets et Tian (2010) [6] les auteurs ont introduit un flot parabolique de métriques multifermées. On donne dans cette Note de nouveaux résultats incluant des propriétés de régularité, une propriété de gradient et une fonctionnelle d'entropie croissante, puis une conjecture pour des résultats d'existence et leurs conséquences topologiques. On introduit aussi une famille d'évolutions géométriques dans une géométrie presque hermitienne qui fournit un cadre général à l'étude de ce flot.

In Streets and Tian (2010) [6] the authors introduced a parabolic flow of pluriclosed metrics. New advancements in the study of this flow are given, including improved regularity results, a gradient property and expanding entropy functional, and a conjectural picture of optimal existence results and their topological consequences. Finally we introduce a family of geometric evolutions in almost Hermitian geometry which provides a general framework for this flow.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.014
Streets, Jeffrey 1 ; Tian, Gang 1

1 Fine Hall, Princeton University, Princeton, NJ 08544, United States
@article{CRMATH_2011__349_1-2_1_0,
     author = {Streets, Jeffrey and Tian, Gang},
     title = {Regularity theory for pluriclosed flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1--4},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.014},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.014/}
}
TY  - JOUR
AU  - Streets, Jeffrey
AU  - Tian, Gang
TI  - Regularity theory for pluriclosed flow
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1
EP  - 4
VL  - 349
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.014/
DO  - 10.1016/j.crma.2010.11.014
LA  - en
ID  - CRMATH_2011__349_1-2_1_0
ER  - 
%0 Journal Article
%A Streets, Jeffrey
%A Tian, Gang
%T Regularity theory for pluriclosed flow
%J Comptes Rendus. Mathématique
%D 2011
%P 1-4
%V 349
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.014/
%R 10.1016/j.crma.2010.11.014
%G en
%F CRMATH_2011__349_1-2_1_0
Streets, Jeffrey; Tian, Gang. Regularity theory for pluriclosed flow. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 1-4. doi : 10.1016/j.crma.2010.11.014. http://www.numdam.org/articles/10.1016/j.crma.2010.11.014/

[1] Dloussky, G.; Oeljeklaus, K.; Toma, M. Class VII0 surfaces with b2 curves, Tohoku Math. J. (2), Volume 55 (2003) no. 2, pp. 283-309

[2] Feldman, M.; Ilmanen, T.; Ni, L. Entropy and reduced distance for Ricci expanders, J. Geom. Anal., Volume 15 (2005) no. 1, pp. 49-62

[3] Nakamura, I. On surfaces of class VII0 with curves, Invent. Math., Volume 78 (1984), pp. 393-443

[4] Oliynyk, T.; Suneeta, V.; Woolgar, E. A gradient flow for worldsheet nonlinear sigma models, Nuclear Phys. B, Volume 739 (2006) no. 3, pp. 441-458

[5] Streets, J. Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys., Volume 58 (2008), pp. 900-912

[6] Streets, J.; Tian, G. A parabolic flow of pluriclosed metrics, Int. Math. Res. Notices, Volume 2010 (2010), pp. 3101-3133

[7] J. Streets, G. Tian, Hermitian curvature flow, JEMS, in press, . | arXiv

[8] Streets, J.; Tian, G. Regularity results for pluriclosed flow | arXiv

[9] Teleman, A. Donaldson theory on non-Kählerian surfaces and class VII surfaces with b2=1, Invent. Math., Volume 162 (2006), pp. 493-521

[10] Tian, G. New results and problems on Kähler–Ricci flow, Astérisque, Volume 322 (2008), pp. 71-92

[11] Tian, G.; Zhang, Z. On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B, Volume 27 (2006) no. 2, pp. 179-192

Cité par Sources :