On montre que converge faiblement vers si faiblement dans , faiblement dans , les séquences et sont compactes dans l'espace dual de et est équi-intégrable, pour , . En effet, on n'utilise que l'équi-intégrabilité du produit scalaire , et non pas celle de chacune des suites.
It is shown that converges weakly to if weakly in and weakly in with , , under the additional assumptions that the sequences and are compact in the dual space of and that is equi-integrable. The main point is that we only require equi-integrability of the scalar product and not of the individual sequences.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_175_0, author = {Conti, Sergio and Dolzmann, Georg and M\"uller, Stefan}, title = {The div{\textendash}curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {175--178}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/} }
TY - JOUR AU - Conti, Sergio AU - Dolzmann, Georg AU - Müller, Stefan TI - The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$ JO - Comptes Rendus. Mathématique PY - 2011 SP - 175 EP - 178 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/ DO - 10.1016/j.crma.2010.11.013 LA - en ID - CRMATH_2011__349_3-4_175_0 ER -
%0 Journal Article %A Conti, Sergio %A Dolzmann, Georg %A Müller, Stefan %T The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$ %J Comptes Rendus. Mathématique %D 2011 %P 175-178 %V 349 %N 3-4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/ %R 10.1016/j.crma.2010.11.013 %G en %F CRMATH_2011__349_3-4_175_0
Conti, Sergio; Dolzmann, Georg; Müller, Stefan. The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 175-178. doi : 10.1016/j.crma.2010.11.013. http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/
[1] Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984), pp. 125-145
[2] An approximation lemma for functions (Ball, J.M., ed.), Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Oxford Univ. Press, 1988, pp. 1-5
[3] Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), Volume 135 (1983), pp. 293-318
[4] Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663
[5] Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A, Volume 114 (1990), pp. 367-379
[6] The div–curl lemma “trente ans après” an extension and an application to the G-convergence of unbounded monotone operators, J. Math. Pures Appl., Volume 91 (2009), pp. 476-494
[7] Continuity and compactness of measures, Adv. in Math., Volume 37 (1980), pp. 16-26
[8] Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286
[9] S. Conti, G. Dolzmann, C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, 2010, preprint.
[10] Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math., Volume 520 (2000), pp. 1-35
[11] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[12] A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651
[13] A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 4585-4597
[14] Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 5 (1978), pp. 489-507
[15] Compacité par compensation : condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 8 (1981), pp. 69-102
[16] Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal., Volume 2 (1995), pp. 345-357
[17] L. Tartar Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, in: Journ. d'Anal. non lin., Proc., Besancon, 1977, in: Lect. Notes Math., vol. 665, 1978, pp. 228–241.
[18] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., vol. 4, in: Edinburgh Res. Notes Math., vol. 39, 1979, pp. 136–212.
[19] The compensated compactness method applied to systems of conservation laws, Oxford, 1982 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 111, Reidel, Dordrecht (1983), pp. 263-285
[20] A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 19 (1992), pp. 313-326
Cité par Sources :