Partial Differential Equations/Mathematical Problems in Mechanics
The div–curl lemma for sequences whose divergence and curl are compact in W1,1
[Le lemme div–rot pour les suites dont la divergence et la boucle sont bornées dans W1,1]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 175-178.

On montre que ukvk converge faiblement vers uv si uku faiblement dans Lp, vkv faiblement dans Lq, les séquences divuk et rotvk sont compactes dans l'espace dual de W01, et ukvk est équi-intégrable, pour p,q(1,), 1/p+1/q=1. En effet, on n'utilise que l'équi-intégrabilité du produit scalaire ukvk, et non pas celle de chacune des suites.

It is shown that ukvk converges weakly to uv if uku weakly in Lp and vkv weakly in Lq with p,q(1,), 1/p+1/q=1, under the additional assumptions that the sequences divuk and curlvk are compact in the dual space of W01, and that ukvk is equi-integrable. The main point is that we only require equi-integrability of the scalar product ukvk and not of the individual sequences.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.013
Conti, Sergio 1 ; Dolzmann, Georg 2 ; Müller, Stefan 1, 3

1 Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
2 Universität Regensburg, 93040 Regensburg, Germany
3 Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2011__349_3-4_175_0,
     author = {Conti, Sergio and Dolzmann, Georg and M\"uller, Stefan},
     title = {The div{\textendash}curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {175--178},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Dolzmann, Georg
AU  - Müller, Stefan
TI  - The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 175
EP  - 178
VL  - 349
IS  - 3-4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/
DO  - 10.1016/j.crma.2010.11.013
LA  - en
ID  - CRMATH_2011__349_3-4_175_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Dolzmann, Georg
%A Müller, Stefan
%T The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$
%J Comptes Rendus. Mathématique
%D 2011
%P 175-178
%V 349
%N 3-4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/
%R 10.1016/j.crma.2010.11.013
%G en
%F CRMATH_2011__349_3-4_175_0
Conti, Sergio; Dolzmann, Georg; Müller, Stefan. The div–curl lemma for sequences whose divergence and curl are compact in $ {W}^{-1,1}$. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 175-178. doi : 10.1016/j.crma.2010.11.013. http://www.numdam.org/articles/10.1016/j.crma.2010.11.013/

[1] Acerbi, E.; Fusco, N. Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984), pp. 125-145

[2] Acerbi, E.; Fusco, N. An approximation lemma for W1,p functions (Ball, J.M., ed.), Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Oxford Univ. Press, 1988, pp. 1-5

[3] Anzellotti, G. Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), Volume 135 (1983), pp. 293-318

[4] Ball, J.M.; Murat, F. Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663

[5] Ball, J.M.; Zhang, K.-W. Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A, Volume 114 (1990), pp. 367-379

[6] Briane, M.; Casado-Díaz, J.; Murat, F. The div–curl lemma “trente ans après” an extension and an application to the G-convergence of unbounded monotone operators, J. Math. Pures Appl., Volume 91 (2009), pp. 476-494

[7] Brooks, J.K.; Chacon, R.V. Continuity and compactness of measures, Adv. in Math., Volume 37 (1980), pp. 16-26

[8] Coifman, R.; Lions, P.-L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286

[9] S. Conti, G. Dolzmann, C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, 2010, preprint.

[10] Dolzmann, G.; Hungerbühler, N.; Müller, S. Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math., Volume 520 (2000), pp. 1-35

[11] Friesecke, G.; James, R.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[12] Liu, F.-C. A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651

[13] Müller, S. A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 4585-4597

[14] Murat, F. Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 5 (1978), pp. 489-507

[15] Murat, F. Compacité par compensation : condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 8 (1981), pp. 69-102

[16] Saadoune, M.; Valadier, M. Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal., Volume 2 (1995), pp. 345-357

[17] L. Tartar Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, in: Journ. d'Anal. non lin., Proc., Besancon, 1977, in: Lect. Notes Math., vol. 665, 1978, pp. 228–241.

[18] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., vol. 4, in: Edinburgh Res. Notes Math., vol. 39, 1979, pp. 136–212.

[19] Tartar, L. The compensated compactness method applied to systems of conservation laws, Oxford, 1982 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 111, Reidel, Dordrecht (1983), pp. 263-285

[20] Zhang, K. A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 19 (1992), pp. 313-326

Cité par Sources :