Soit M une variété complexe compacte muni d'une métrique de Gauduchon. Si TM est holomorphiquement trivial, et est un fibré -Higgs stable, alors on démontre que . On démontre que la correspondance entre les fibrés de Higgs et les représentations du groupe fondamental pour une variété kählerienne compacte ne s'étend pas aux variétés de Gauduchon. Ceci est accompli en appliquant le résultat ci-dessus à , où Γ est un sous-groupe discret, sans torsion et co-compact d'un groupe semi-simple complexe G.
Let M be a compact complex manifold equipped with a Gauduchon metric. If TM is holomorphically trivial, and is a stable -Higgs bundle on M, then we show that . We show that the correspondence between Higgs bundles and representations of the fundamental group for a compact Kähler manifold does not extend to compact Gauduchon manifolds. This is done by applying the above result to , where Γ is a discrete torsionfree cocompact subgroup of a complex semisimple group G.
Accepté le :
Publié le :
@article{CRMATH_2011__349_1-2_71_0, author = {Biswas, Indranil}, title = {Stable {Higgs} bundles on compact {Gauduchon} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--74}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.010/} }
TY - JOUR AU - Biswas, Indranil TI - Stable Higgs bundles on compact Gauduchon manifolds JO - Comptes Rendus. Mathématique PY - 2011 SP - 71 EP - 74 VL - 349 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.11.010/ DO - 10.1016/j.crma.2010.11.010 LA - en ID - CRMATH_2011__349_1-2_71_0 ER -
Biswas, Indranil. Stable Higgs bundles on compact Gauduchon manifolds. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 71-74. doi : 10.1016/j.crma.2010.11.010. http://www.numdam.org/articles/10.1016/j.crma.2010.11.010/
[1] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., Volume 72 (1960), pp. 179-188
[2] Hermitian–Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann., Volume 280 (1988), pp. 625-648
[3] Flat G-bundles with canonical metrics, J. Diff. Geom., Volume 28 (1988), pp. 361-382
[4] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc., Volume 55 (1987), pp. 127-131
[5] La 1-forme de torsion d'une variétés hermitienne compacte, Math. Ann., Volume 267 (1984), pp. 495-518
[6] The self-duality equations on a Riemann surface, Proc. London Math. Soc., Volume 55 (1987), pp. 59-126
[7] Differential Geometry of Complex Vector Bundles, Publications of the Math. Society of Japan, vol. 15, Iwanami Shoten Publishers/Princeton University Press, Tokyo/Princeton, NJ, 1987
[8] Hermitian–Yang–Mills connection on non-Käher manifolds, San Diego, Calif., 1986 (Adv. Ser. Math. Phys.), Volume vol. 1, World Sci. Publishing, Singapore (1987), pp. 560-573
[9] Deformations of complex structures on , Proc. Indian Acad. Sci. (Math. Sci.), Volume 104 (1994), pp. 389-395
[10] Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988), pp. 867-918
[11] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., Volume 75 (1992), pp. 5-95
[12] On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math., Volume 39 (1986), pp. 257-293
Cité par Sources :