Mathematical Physics
High frequency wave packets for the Schrödinger equation and its numerical approximations
[Paquets d'ondes à haute fréquence pour l'équation de Schrödinger et ses approximations numériques]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 105-110.

On construit des paquets d'ondes gaussiennes pour l'équation de Schrödinger linéaire continue unidimensionnelle ainsi que pour sa semi-discrétisation en espace par différences finies. On illustre numériquement le manque d'uniformité par rapport au pas du maillage des propriétés de dispersion des solutions numériques démontré dans Ignat et Zuazua (2009) [6]. Par ailleurs, il est bien connu que les algorithmes bi-grilles sont des mécanismes de filtrage efficaces pour récupérer l'uniformité des propriétés dispersives. On analyse la façon dont les solutions bi-grilles correspondant à plusieurs projections de la grille fine sur la grossière se divisent en plusieurs paquets d'ondes, chacun se propageant différement. On représente numériquement ces phénomènes et on montre que ce comportement est en accord avec les résultats théoriques connus sur la dispersion des solutions bi-grilles.

We build Gaussian wave packets for the linear Schrödinger equation and its finite difference space semi-discretization and illustrate the lack of uniform dispersive properties of the numerical solutions as established in Ignat and Zuazua (2009) [6]. It is by now well known that bigrid algorithms provide filtering mechanisms allowing to recover the uniformity of the dispersive properties as the mesh size goes to zero. We analyze and illustrate numerically how these high frequency wave packets split and propagate under these bigrid filtering mechanisms, depending on how the fine grid/coarse grid filtering is implemented.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.009
Marica, Aurora 1 ; Zuazua, Enrique 2, 1

1 BCAM - Basque Center for Applied Mathematics, Bizkaia Technology Park 500, 48160, Derio, Basque Country, Spain
2 Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Basque Country, Spain
@article{CRMATH_2011__349_1-2_105_0,
     author = {Marica, Aurora and Zuazua, Enrique},
     title = {High frequency wave packets for the {Schr\"odinger} equation and its numerical approximations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {105--110},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.009/}
}
TY  - JOUR
AU  - Marica, Aurora
AU  - Zuazua, Enrique
TI  - High frequency wave packets for the Schrödinger equation and its numerical approximations
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 105
EP  - 110
VL  - 349
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.009/
DO  - 10.1016/j.crma.2010.11.009
LA  - en
ID  - CRMATH_2011__349_1-2_105_0
ER  - 
%0 Journal Article
%A Marica, Aurora
%A Zuazua, Enrique
%T High frequency wave packets for the Schrödinger equation and its numerical approximations
%J Comptes Rendus. Mathématique
%D 2011
%P 105-110
%V 349
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.009/
%R 10.1016/j.crma.2010.11.009
%G en
%F CRMATH_2011__349_1-2_105_0
Marica, Aurora; Zuazua, Enrique. High frequency wave packets for the Schrödinger equation and its numerical approximations. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 105-110. doi : 10.1016/j.crma.2010.11.009. http://www.numdam.org/articles/10.1016/j.crma.2010.11.009/

[1] Arnold, A.; Ehrhardt, M.; Sofronov, I. Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation and stability, Comm. Math. Sci., Volume 1 (2003) no. 3, pp. 501-556

[2] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, AMS, New York, 2003

[3] E. Faou, B. Grébert, Hamiltonian interpolation of splitting approximations for nonlinear PDEs, preprint.

[4] Glowinski, R. Ensuring the well-posedness by analogy; Stokes problem and boundary control for the wave equation, Journal of Computational Physics, Volume 103 (1992) no. 2, pp. 189-221

[5] L. Ignat, A splitting method for the non-linear Schrödinger equation, preprint.

[6] Ignat, L.; Zuazua, E. Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1366-1390

[7] L. Ignat, E. Zuazua, Convergence rates for dispersive approximation schemes for non-linear Schrödinger equations, preprint.

[8] Linares, C.K.; Ponce, G. Introduction to Nonlinear Dispersive Equations, Springer, 2009

Cité par Sources :