On démontre la localisation spectrale exponentielle pour un modèle d'Anderson discret, avec interaction à courte portée dans un champ de potentiel aléatoire i.i.d., à basses énergies. La démonstration utilise l'analyse multi-échelle multi-particule développée dans Chulaevsky et Suhov (2009) [4] dans le cas de grand désordre. Cette méthode s'applique à une classe de potentiels aléatoires plus large que dans Aizenman et Warzel (2009) [2], où la localisation dynamique a été démontrée par la méthode des moments fractionnaires.
We prove exponential spectral localization in a two-particle lattice Anderson model, with a short-range interaction and an external i.i.d. random potential, at sufficiently low energies. The proof is based on the multi-particle multi-scale analysis developed earlier in Chulaevsky and Suhov (2009) [4] in the case of high disorder. Our method applies to a larger class of random potentials than in Aizenman and Warzel (2009) [2] where dynamical localization was proved with the help of the fractional moment method.
Accepté le :
Publié le :
@article{CRMATH_2011__349_3-4_167_0, author = {Ekanga, Tr\'esor}, title = {On two-particle {Anderson} localization at low energies}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--170}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.003/} }
TY - JOUR AU - Ekanga, Trésor TI - On two-particle Anderson localization at low energies JO - Comptes Rendus. Mathématique PY - 2011 SP - 167 EP - 170 VL - 349 IS - 3-4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.11.003/ DO - 10.1016/j.crma.2010.11.003 LA - en ID - CRMATH_2011__349_3-4_167_0 ER -
Ekanga, Trésor. On two-particle Anderson localization at low energies. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 167-170. doi : 10.1016/j.crma.2010.11.003. http://www.numdam.org/articles/10.1016/j.crma.2010.11.003/
[1] Localization at large disorder and at extreme energies: an elementary derivation, Comm. Math. Phys., Volume 157 (1993), pp. 245-278
[2] Localization bounds for multi-particle systems, Comm. Math. Phys., Volume 290 (2009), pp. 903-934
[3] Wegner bounds for a two-particle tight binding model, Comm. Math. Phys., Volume 283 (2008), pp. 479-489
[4] Eigenfunctions in a two-particle Anderson tight binding model, Comm. Math. Phys., Volume 289 (2009), pp. 701-723
[5] Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys., Volume 101 (1985), pp. 21-46
[6] A Wegner estimate for multi-particle random Hamiltonians, Zh. Mat. Fiz. Anal. Geom., Volume 4 (2008), pp. 121-127
[7] Caught by Disorder, Birkhäuser Inc., Boston, MA, 2001
[8] A new proof of localization in the Anderson tight binding model, Comm. Math. Phys., Volume 124 (1989), pp. 285-299
[9] Bounds on the density of states in disordered systems, Z. Phys. B Condens. Matter, Volume 44 (1981), pp. 9-15
Cité par Sources :