Dans cette Note, on étudie l'estimateur des moindres carrés conditionnels (CLS) dans les modèles GARCH périodiques (PGARCH) dont le carré centré des innovations est une différence de martingale. Cette approche est étendue aux modèles PARMA–PGARCH. La consistance forte et la normalité asymptotique ont été établies.
In this Note, a conditional least squares (CLS) estimates for periodic GARCH (PGARCH) models with martingale difference centered squared innovations is developed. The approach is extended to the PARMA–PGARCH models. We establish the strong consistency and the asymptotic normality for our estimate.
Accepté le :
Publié le :
@article{CRMATH_2010__348_21-22_1211_0, author = {Bibi, Abdelouahab and Lescheb, Ines}, title = {A conditional least squares approach to {\protect\emph{PGARCH}} and {\protect\emph{PARMA}{\textendash}\protect\emph{PGARCH}} time series estimation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1211--1216}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.10.019/} }
TY - JOUR AU - Bibi, Abdelouahab AU - Lescheb, Ines TI - A conditional least squares approach to PGARCH and PARMA–PGARCH time series estimation JO - Comptes Rendus. Mathématique PY - 2010 SP - 1211 EP - 1216 VL - 348 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.10.019/ DO - 10.1016/j.crma.2010.10.019 LA - en ID - CRMATH_2010__348_21-22_1211_0 ER -
%0 Journal Article %A Bibi, Abdelouahab %A Lescheb, Ines %T A conditional least squares approach to PGARCH and PARMA–PGARCH time series estimation %J Comptes Rendus. Mathématique %D 2010 %P 1211-1216 %V 348 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.10.019/ %R 10.1016/j.crma.2010.10.019 %G en %F CRMATH_2010__348_21-22_1211_0
Bibi, Abdelouahab; Lescheb, Ines. A conditional least squares approach to PGARCH and PARMA–PGARCH time series estimation. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1211-1216. doi : 10.1016/j.crma.2010.10.019. http://www.numdam.org/articles/10.1016/j.crma.2010.10.019/
[1] Quasi-maximum likelihood estimation of periodic GARCH and periodic processes, J. Time Series Anal., Volume 30 (2008) no. 1, pp. 19-45
[2] Large sample properties of parameters estimates for periodic ARMA models, J. Time Series Anal., Volume 22 (2001), pp. 1-13
[3] Strong consistency and asymptotic normality of least squares estimators for PGARCH and PARMA–PGARCH, Statist. Probab. Lett., Volume 80 (2010), pp. 1532-1542
[4] Periodic autoregressive conditional heteroscedasticity, J. Bus. Econom. Statist., Volume 14 (1996), pp. 139-151
[5] Estimation linear representations of nonlinear processes, J. Statist. Plann. Inference, Volume 68 (1998) no. 1, pp. 145-165
[6] Modèles GARCH: Structure, Inférence statistique et Applications financières, Ed. Economica, 2009
[7] Periodic and multiple autoregressions, Ann. Statist., Volume 6 (1978), pp. 1310-1317
Cité par Sources :