Algebraic Geometry
Pure motives with representable Chow groups
[Motifs purs dont les groupes de Chow sont représentables]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1191-1195.

Soit k un corps algébriquement clos. Nous démontrons, en nous servant de la théorie des motifs birationnels développée par Kahn et Sujatha, qu'un motif de Chow défini sur k dont les groupes de Chow sont tous représentables (au sens de la définition 2.1) appartient à la sous-catégorie pleine et épaisse des motifs engendrée par les motifs de courbes tordus.

Let k be an algebraically closed field. We show using Kahn's and Sujatha's theory of birational motives that a Chow motive over k whose Chow groups are all representable (in the sense of Definition 2.1) belongs to the full and thick subcategory of motives generated by the twisted motives of curves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.017
Vial, Charles 1

1 DPMMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, UK
@article{CRMATH_2010__348_21-22_1191_0,
     author = {Vial, Charles},
     title = {Pure motives with representable {Chow} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1191--1195},
     publisher = {Elsevier},
     volume = {348},
     number = {21-22},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/}
}
TY  - JOUR
AU  - Vial, Charles
TI  - Pure motives with representable Chow groups
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1191
EP  - 1195
VL  - 348
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/
DO  - 10.1016/j.crma.2010.10.017
LA  - en
ID  - CRMATH_2010__348_21-22_1191_0
ER  - 
%0 Journal Article
%A Vial, Charles
%T Pure motives with representable Chow groups
%J Comptes Rendus. Mathématique
%D 2010
%P 1191-1195
%V 348
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/
%R 10.1016/j.crma.2010.10.017
%G en
%F CRMATH_2010__348_21-22_1191_0
Vial, Charles. Pure motives with representable Chow groups. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1191-1195. doi : 10.1016/j.crma.2010.10.017. http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/

[1] Bloch, S.; Srinivas, V. Remarks on correspondences and algebraic cycles, Amer. J. Math., Volume 105 (1983) no. 5, pp. 1235-1253

[2] Esnault, Hélène; Levine, Marc Surjectivity of cycle maps, Astérisque, Volume 218 (1993), pp. 203-226

[3] S. Gorchinskiy, V. Guletskii, Motives and representability of algebraic cycles on threefolds over a field, preprint.

[4] Jannsen, Uwe Motives, numerical equivalence, and semi-simplicity, Invent. Math., Volume 107 (1992) no. 3, pp. 447-452

[5] Jannsen, Uwe Motivic sheaves and filtrations on Chow groups, Seattle, WA, 1991 (Proc. Sympos. Pure Math.), Volume vol. 55, Amer. Math. Soc., Providence, RI (1994), pp. 245-302

[6] B. Kahn, R. Sujatha, Birational motives, I pure birational motives, preprint, February 27, 2009.

[7] Kimura, Shun-Ichi Surjectivity of the cycle map for Chow motives, Fields Inst. Commun., Volume 56 (2009), pp. 157-165

[8] Saito, Hiroshi Abelian varieties attached to cycles of intermediate dimension, Nagoya Math. J., Volume 75 (1979), pp. 95-119

[9] Scholl, A.J. Classical motives, Seattle, WA, 1991 (Proc. Sympos. Pure Math.), Volume vol. 55, Amer. Math. Soc., Providence, RI (1994), pp. 163-187

[10] Charles Vial, Projectors on the intermediate algebraic Jacobians, preprint.

Cité par Sources :