Soit k un corps algébriquement clos. Nous démontrons, en nous servant de la théorie des motifs birationnels développée par Kahn et Sujatha, qu'un motif de Chow défini sur k dont les groupes de Chow sont tous représentables (au sens de la définition 2.1) appartient à la sous-catégorie pleine et épaisse des motifs engendrée par les motifs de courbes tordus.
Let k be an algebraically closed field. We show using Kahn's and Sujatha's theory of birational motives that a Chow motive over k whose Chow groups are all representable (in the sense of Definition 2.1) belongs to the full and thick subcategory of motives generated by the twisted motives of curves.
Accepté le :
Publié le :
@article{CRMATH_2010__348_21-22_1191_0, author = {Vial, Charles}, title = {Pure motives with representable {Chow} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1191--1195}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/} }
TY - JOUR AU - Vial, Charles TI - Pure motives with representable Chow groups JO - Comptes Rendus. Mathématique PY - 2010 SP - 1191 EP - 1195 VL - 348 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/ DO - 10.1016/j.crma.2010.10.017 LA - en ID - CRMATH_2010__348_21-22_1191_0 ER -
Vial, Charles. Pure motives with representable Chow groups. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1191-1195. doi : 10.1016/j.crma.2010.10.017. http://www.numdam.org/articles/10.1016/j.crma.2010.10.017/
[1] Remarks on correspondences and algebraic cycles, Amer. J. Math., Volume 105 (1983) no. 5, pp. 1235-1253
[2] Surjectivity of cycle maps, Astérisque, Volume 218 (1993), pp. 203-226
[3] S. Gorchinskiy, V. Guletskii, Motives and representability of algebraic cycles on threefolds over a field, preprint.
[4] Motives, numerical equivalence, and semi-simplicity, Invent. Math., Volume 107 (1992) no. 3, pp. 447-452
[5] Motivic sheaves and filtrations on Chow groups, Seattle, WA, 1991 (Proc. Sympos. Pure Math.), Volume vol. 55, Amer. Math. Soc., Providence, RI (1994), pp. 245-302
[6] B. Kahn, R. Sujatha, Birational motives, I pure birational motives, preprint, February 27, 2009.
[7] Surjectivity of the cycle map for Chow motives, Fields Inst. Commun., Volume 56 (2009), pp. 157-165
[8] Abelian varieties attached to cycles of intermediate dimension, Nagoya Math. J., Volume 75 (1979), pp. 95-119
[9] Classical motives, Seattle, WA, 1991 (Proc. Sympos. Pure Math.), Volume vol. 55, Amer. Math. Soc., Providence, RI (1994), pp. 163-187
[10] Charles Vial, Projectors on the intermediate algebraic Jacobians, preprint.
Cité par Sources :