Nous présentons une méthode directe pour résoudre un système de Toeplitz bande par blocs de Toeplitz bandes avec une complexité de
We present a direct method for the solution of
Accepté le :
Publié le :
@article{CRMATH_2010__348_21-22_1221_0, author = {Houssam, Khalil and Mouhamad, Hossein and Hayssam, Ezzaldine}, title = {R\'esolution rapide des syst\`emes de {Toeplitz} bande par blocs de {Toeplitz} bandes}, journal = {Comptes Rendus. Math\'ematique}, pages = {1221--1224}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.009}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2010.10.009/} }
TY - JOUR AU - Houssam, Khalil AU - Mouhamad, Hossein AU - Hayssam, Ezzaldine TI - Résolution rapide des systèmes de Toeplitz bande par blocs de Toeplitz bandes JO - Comptes Rendus. Mathématique PY - 2010 SP - 1221 EP - 1224 VL - 348 IS - 21-22 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.10.009/ DO - 10.1016/j.crma.2010.10.009 LA - fr ID - CRMATH_2010__348_21-22_1221_0 ER -
%0 Journal Article %A Houssam, Khalil %A Mouhamad, Hossein %A Hayssam, Ezzaldine %T Résolution rapide des systèmes de Toeplitz bande par blocs de Toeplitz bandes %J Comptes Rendus. Mathématique %D 2010 %P 1221-1224 %V 348 %N 21-22 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.10.009/ %R 10.1016/j.crma.2010.10.009 %G fr %F CRMATH_2010__348_21-22_1221_0
Houssam, Khalil; Mouhamad, Hossein; Hayssam, Ezzaldine. Résolution rapide des systèmes de Toeplitz bande par blocs de Toeplitz bandes. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1221-1224. doi : 10.1016/j.crma.2010.10.009. https://www.numdam.org/articles/10.1016/j.crma.2010.10.009/
[1] Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra and its Applications, Volume 52–53 (1983), pp. 99-126
[2] Tensor rank and border rank of band Toeplitz matrices, SIAM J. Comput., Volume 16 (1987) no. 2, pp. 252-258
[3] Polynomial and Matrix Computations. Vol. 1, Fundamental Algorithms, Progress Theoretical Computer Science, Birkhäuser Boston Inc., Boston, MA, 1994
[4] Solving Toeplitz- and Vandermonde-like linear systems with large displacement rank, ISSAC '07: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ACM, New York, NY, USA, 2007, pp. 33-40
[5] Matrix Computations, The Johns Hopkins University Press, 1996
[6] Fast inversion of banded Toeplitz matrices by circular decompositions, IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume 26 (Apr 1978) no. 1–4, pp. 121-126
[7] Structured and Toeplitz-block-Toeplitz matrices in numeric and symbolic computation http://tel.archives-ouvertes.fr/docs/00/30/69/87/PDF/these.pdf (Ph.D. thesis, Institut Camille Jordan, Université Lyon 1, 2008)
[8] Multivariate polynomials, duality, and structured matrices, Real Computation and Complexity, Schloss Dagstuhl, 1998 (J. Complexity), Volume 16 (2000) no. 1, pp. 110-180
[9] On fast and superfast algorithms for solving block Toeplitz systems, Twenty-Third Asilomar Conference on Signals, Systems and Computers, Oct. 30–Nov. 1, 1989, pp. 643-647
Cité par Sources :