Accepté le :
Publié le :
@article{CRMATH_2010__348_21-22_1185_0, author = {Dubois, J\'er\^ome and Wegner, Christian}, title = {$ {L}^{2}${-Alexander} invariant for torus knots}, journal = {Comptes Rendus. Math\'ematique}, pages = {1185--1189}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.10.008/} }
TY - JOUR AU - Dubois, Jérôme AU - Wegner, Christian TI - $ {L}^{2}$-Alexander invariant for torus knots JO - Comptes Rendus. Mathématique PY - 2010 SP - 1185 EP - 1189 VL - 348 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.10.008/ DO - 10.1016/j.crma.2010.10.008 LA - en ID - CRMATH_2010__348_21-22_1185_0 ER -
%0 Journal Article %A Dubois, Jérôme %A Wegner, Christian %T $ {L}^{2}$-Alexander invariant for torus knots %J Comptes Rendus. Mathématique %D 2010 %P 1185-1189 %V 348 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.10.008/ %R 10.1016/j.crma.2010.10.008 %G en %F CRMATH_2010__348_21-22_1185_0
Dubois, Jérôme; Wegner, Christian. $ {L}^{2}$-Alexander invariant for torus knots. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1185-1189. doi : 10.1016/j.crma.2010.10.008. http://www.numdam.org/articles/10.1016/j.crma.2010.10.008/
[1] Knots, de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter, 2003
[2] Analytic torsion and the heat equation, Ann. Math., Volume 109 (1979), pp. 259-322
[3] J. Dubois, C. Wegner, -Alexander invariant for knots, in preparation.
[4] A survey of twisted Alexander polynomials, 2009 (preprint) | arXiv
[5] An -Alexander invariant for knots, Commun. Contemp. Math., Volume 8 (2006) no. 2, pp. 167-187
[6] An -Alexander–Conway invariant for knots and the volume conjecture, Differential Geometry and Physics, Nankai Tracts Math., vol. 10, World Sci. Publ., Hackensack, NJ, 2006, pp. 303-312
[7] -Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44, Springer-Verlag, Berlin, 2002
[8] -torsion of hyperbolic manifolds of finite volume, Geometric and Functional Analysis, Volume 9 (1999), pp. 518-567
[9] A duality theorem for Reidemeister torsion, Ann. of Math., Volume 76 (1962), pp. 134-147
[10] Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math., Volume 28 (1978), pp. 233-305
Cité par Sources :