[Extension de la formule de Reilly avec applications aux estimées de valeurs propres pour les laplaciens avec dérive]
Dans cette Note, nous étendons la formule de Reilly au cas des opérateurs Laplaciens avec dérive, et l'appliquons à l'étude d'estimées de valeurs propres pour de tels opérateurs sur des variétés riemanniennes compactes à bord. Nos estimées généralisent des résultats antérieurs de Reilly ainsi que de Choi et Wang.
In this Note, we extend the Reilly formula for drifting Laplacian operator and apply it to study eigenvalue estimate for drifting Laplacian operators on compact Riemannian manifolds' boundary. Our results on eigenvalue estimates extend previous results of Reilly and Choi and Wang.
Accepté le :
Publié le :
@article{CRMATH_2010__348_21-22_1203_0, author = {Ma, Li and Du, Sheng-Hua}, title = {Extension of {Reilly} formula with applications to eigenvalue estimates for drifting {Laplacians}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1203--1206}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.10.003/} }
TY - JOUR AU - Ma, Li AU - Du, Sheng-Hua TI - Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians JO - Comptes Rendus. Mathématique PY - 2010 SP - 1203 EP - 1206 VL - 348 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.10.003/ DO - 10.1016/j.crma.2010.10.003 LA - en ID - CRMATH_2010__348_21-22_1203_0 ER -
%0 Journal Article %A Ma, Li %A Du, Sheng-Hua %T Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians %J Comptes Rendus. Mathématique %D 2010 %P 1203-1206 %V 348 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.10.003/ %R 10.1016/j.crma.2010.10.003 %G en %F CRMATH_2010__348_21-22_1203_0
Ma, Li; Du, Sheng-Hua. Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1203-1206. doi : 10.1016/j.crma.2010.10.003. http://www.numdam.org/articles/10.1016/j.crma.2010.10.003/
[1] Some Nonlinear Problems in Riemannian Geometry, Springer Monogr. Math., Springer-Verlag, Berlin, 1998
[2] Diffusion hypercontractivities, Séminaire de Probabilités XIX, 1983/1984 (Lect. Notes in Math.), Volume vol. 1123, Springer, Berlin (1985), pp. 177-206
[3] Volume comparison theorems without Jacobi fields, Current Trends in Potential Theory, Theta Ser. Adv. Math., vol. 4, Theta, Bucharest, 2005, pp. 115-122
[4] A first eigenvalue estimate for minimal hypersurfaces, J. Diff. Geom., Volume 18 (1983), pp. 559-562
[5] Hamilton's Ricci Flow, Lectures in Contemporary Mathematics, vol. 3, Science Press and American Mathematical Society, 2006
[6] Riemannian Geometry, Universitext, Springer-Verlag, Berlin, 2004
[7] The formation of singularities in the Ricci flow, Surveys Diff. Geom., Volume 2 (1995), pp. 7-136
[8] Lecture Notes on Geometric Analysis, Lecture Series, vol. 6, Seoul National University, 1993 http://math.uci.edu/~pli/lecture.pdf
[9] Estimates of eigenvalues of a compact Riemannian manifold, Geometry of Laplace Operator, Proc. Symp. Pure Math., vol. XXXVI, AMS, Providence, RI, 1980, pp. 205-239
[10] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201
[11] Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pure Appl., Volume 84 (2005), pp. 1295-1361
[12] The Bochner technique and modification of the Ricci tensor, Ann. Global Anal. Geom., Volume 36 (2009), pp. 285-291
[13] A lower bound of the first eigenvalue of a closed manifold with positive Ricci curvature, Ann. Global Anal. Geom., Volume 31 (2007) no. 4, pp. 385-408
[14] Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal., Volume 241 (2006), pp. 374-382
[15] L. Ma, Eigenvalue estimates and L1 energy on closed manifolds, preprint, 2009.
[16] Hamilton type estimates for heat equations on manifolds | arXiv
[17] Convex eigenfunction of a drifting Laplacian operator and the fundamental gap, Pacific J. Math., Volume 240 (2009), pp. 343-361
[18] Convexity of the first eigenfunction of the drifting Laplacian operator and its applications, New York J. Math., Volume 14 (2008), pp. 393-401
[19] The entropy formula for the Ricci flow and its geometric applications, 2002 | arXiv
[20] Applications of Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977), pp. 459-472
[21] Lectures on Differential Geometry, International Press, 1994
[22] Optimal Transport, Old and New, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009
[23] Changyu Xia, Universal inequalities for eigenvalues of the vibration problem for a clamped plate on Riemannian manifolds, Quart. J. Math., September 4, 2009, . | DOI
Cité par Sources :
☆ The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20090002110019.