En partant du problème de Signorini en présence d'un obstacle plan on justifie l'inéquation limite du contact unilatéral posé dans un domaine 2D. On montre en particulier qu'on peut découpler les trois composantes covariantes du champ de déplacement limite de Kirchhoff–Love de telle sorte que la condition d'impénétrabilité ne porte que sur la composante « transverse », comme cela se passe dans le cas cartésien.
Starting from the 3D Signorini problem in presence of a plane obstacle, we justify the limit inequation of unilateral contact posed in a 2D domain. In particular, we show that we can uncouple the three covariant components of the limit Kirchhoff–Love displacement field so that the non-penetrability condition involves only the “transverse” component as this is the case in Cartesian framework.
Accepté le :
Publié le :
@article{CRMATH_2010__348_21-22_1235_0, author = {L\'eger, Alain and Miara, Bernadette}, title = {The obstacle problem for shallow shells in curvilinear coordinates}, journal = {Comptes Rendus. Math\'ematique}, pages = {1235--1239}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.09.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2010.09.013/} }
TY - JOUR AU - Léger, Alain AU - Miara, Bernadette TI - The obstacle problem for shallow shells in curvilinear coordinates JO - Comptes Rendus. Mathématique PY - 2010 SP - 1235 EP - 1239 VL - 348 IS - 21-22 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2010.09.013/ DO - 10.1016/j.crma.2010.09.013 LA - en ID - CRMATH_2010__348_21-22_1235_0 ER -
%0 Journal Article %A Léger, Alain %A Miara, Bernadette %T The obstacle problem for shallow shells in curvilinear coordinates %J Comptes Rendus. Mathématique %D 2010 %P 1235-1239 %V 348 %N 21-22 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2010.09.013/ %R 10.1016/j.crma.2010.09.013 %G en %F CRMATH_2010__348_21-22_1235_0
Léger, Alain; Miara, Bernadette. The obstacle problem for shallow shells in curvilinear coordinates. Comptes Rendus. Mathématique, Tome 348 (2010) no. 21-22, pp. 1235-1239. doi : 10.1016/j.crma.2010.09.013. http://www.numdam.org/articles/10.1016/j.crma.2010.09.013/
[1] Justification d'un modèle de coques “faiblement courbées” en coordonnées curvilignes, Math. Modelling Num. Analysis, Volume 31 (1997) no. 3, pp. 409-434
[2] Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., Volume 45 (1992), pp. 327-360
[3] Asymptotic analysis of linearly elastic shells, Asymptotic Analysis, Volume 12 (1996), pp. 41-54
[4] Mathematical justification of the obstacle problem in the case of a shallow shell, J. Elasticity, Volume 90 (2008), pp. 241-257
[5] A. Léger, B. Miara, The obstacle problem for shallow shells: A curvilinear approach, Int. J. Numerical Analysis and Modeling B (2010), submitted for publication.
Cité par Sources :