Mathematical Analysis
Self-similar sets with initial cubic patterns
[Ensembles auto-similaires avec motifs initiaux cubiques]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 15-20.

Si A{0,,n1}m, soit EA l'unique compact non vide de Rm tel que EA=aA(1nEA+an). Nous montrons que deux tels ensembles auto-similaires totalement discontinus EA et EB (avec A,B{0,,n1}m) sont lipschitziennement équivalents si et seulement si #A=#B.

For A{0,,n1}m, let EA be the unique nonempty compact subset of Rm such that EA=aA(1nEA+an). We show that two such self-similar sets EA and EB (for A,B{0,,n1}m), supposed to be totally disconnected, are Lipschitz equivalent if and only if #A=#B.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.12.006
Xi, Li-Feng 1 ; Xiong, Ying 2

1 Institute of Mathematics, Zhejiang Wanli University, Ningbo 315100, PR China
2 Department of Mathematics, South China University of Technology, Guangzhou 510641, PR China
@article{CRMATH_2010__348_1-2_15_0,
     author = {Xi, Li-Feng and Xiong, Ying},
     title = {Self-similar sets with initial cubic patterns},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {15--20},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.12.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/}
}
TY  - JOUR
AU  - Xi, Li-Feng
AU  - Xiong, Ying
TI  - Self-similar sets with initial cubic patterns
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 15
EP  - 20
VL  - 348
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/
DO  - 10.1016/j.crma.2009.12.006
LA  - en
ID  - CRMATH_2010__348_1-2_15_0
ER  - 
%0 Journal Article
%A Xi, Li-Feng
%A Xiong, Ying
%T Self-similar sets with initial cubic patterns
%J Comptes Rendus. Mathématique
%D 2010
%P 15-20
%V 348
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/
%R 10.1016/j.crma.2009.12.006
%G en
%F CRMATH_2010__348_1-2_15_0
Xi, Li-Feng; Xiong, Ying. Self-similar sets with initial cubic patterns. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 15-20. doi : 10.1016/j.crma.2009.12.006. http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/

[1] Cooper, D.; Pignataro, T. On the shape of Cantor sets, J. Differential Geom., Volume 28 (1988), pp. 203-221

[2] David, G.; Semmes, S. Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure, Oxford Univ. Press, 1997

[3] Falconer, K.J.; Marsh, D.T. Classification of quasi-circles by Hausdorff dimension, Nonlinearity, Volume 2 (1989), pp. 489-493

[4] Falconer, K.J.; Marsh, D.T. On the Lipschitz equivalence of Cantor sets, Mathematika, Volume 39 (1992), pp. 223-233

[5] Mauldin, R.D.; Williams, S.C. Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., Volume 309 (1988), pp. 811-829

[6] Rao, H.; Ruan, H.-J.; Xi, L.-F. Lipschitz equivalence of self-similar sets, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 191-196

[7] Wen, Z.-Y.; Xi, L.-F. Relations among Whitney sets, self-similar arcs and quasi-arcs, Israel J. Math., Volume 136 (2003), pp. 251-267

[8] Xi, L.-F. Lipschitz equivalence of self-conformal sets, J. London Math. Soc. (2), Volume 70 (2004), pp. 369-382

[9] Xi, L.-F. Quasi-Lipschitz equivalence of fractals, Israel J. Math., Volume 160 (2007), pp. 1-21

Cité par Sources :