Si , soit l'unique compact non vide de tel que . Nous montrons que deux tels ensembles auto-similaires totalement discontinus et (avec ) sont lipschitziennement équivalents si et seulement si .
For , let be the unique nonempty compact subset of such that . We show that two such self-similar sets and (for ), supposed to be totally disconnected, are Lipschitz equivalent if and only if .
Accepté le :
Publié le :
@article{CRMATH_2010__348_1-2_15_0, author = {Xi, Li-Feng and Xiong, Ying}, title = {Self-similar sets with initial cubic patterns}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--20}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.12.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/} }
TY - JOUR AU - Xi, Li-Feng AU - Xiong, Ying TI - Self-similar sets with initial cubic patterns JO - Comptes Rendus. Mathématique PY - 2010 SP - 15 EP - 20 VL - 348 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/ DO - 10.1016/j.crma.2009.12.006 LA - en ID - CRMATH_2010__348_1-2_15_0 ER -
Xi, Li-Feng; Xiong, Ying. Self-similar sets with initial cubic patterns. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 15-20. doi : 10.1016/j.crma.2009.12.006. http://www.numdam.org/articles/10.1016/j.crma.2009.12.006/
[1] On the shape of Cantor sets, J. Differential Geom., Volume 28 (1988), pp. 203-221
[2] Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure, Oxford Univ. Press, 1997
[3] Classification of quasi-circles by Hausdorff dimension, Nonlinearity, Volume 2 (1989), pp. 489-493
[4] On the Lipschitz equivalence of Cantor sets, Mathematika, Volume 39 (1992), pp. 223-233
[5] Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., Volume 309 (1988), pp. 811-829
[6] Lipschitz equivalence of self-similar sets, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 191-196
[7] Relations among Whitney sets, self-similar arcs and quasi-arcs, Israel J. Math., Volume 136 (2003), pp. 251-267
[8] Lipschitz equivalence of self-conformal sets, J. London Math. Soc. (2), Volume 70 (2004), pp. 369-382
[9] Quasi-Lipschitz equivalence of fractals, Israel J. Math., Volume 160 (2007), pp. 1-21
Cité par Sources :