En partant de la classification de Prasad et Yeung [Invent. Math. 168 (2007) 321–370], nous montrons qu'il existe précisément 50 faux plans projectifs (à homéomorphisme près, 100 à biholomorphisme près), et présentons chacun comme un quotient de la boule unité de . Certains de ces plans admettent des quotients singuliers par des groupes d'automorphismes à 3 éléments, et trois d'entre eux sont simplement connexes. De plus, pour chaque entier , nous présentons des surfaces algébriques avec .
Building upon the classification of Prasad and Yeung [Invent. Math. 168 (2007) 321–370], we have shown that there exist exactly 50 fake projective planes (up to homeomorphism; 100 up to biholomorphism), and exhibited each of them explicitly as a quotient of the unit ball in . Some of these fake planes admit singular quotients by 3 element groups and three of these quotients are simply connected. Also exhibited are algebraic surfaces with for any positive integer n.
Accepté le :
Publié le :
@article{CRMATH_2010__348_1-2_11_0, author = {Cartwright, Donald I. and Steger, Tim}, title = {Enumeration of the 50 fake projective planes}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--13}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.11.016/} }
TY - JOUR AU - Cartwright, Donald I. AU - Steger, Tim TI - Enumeration of the 50 fake projective planes JO - Comptes Rendus. Mathématique PY - 2010 SP - 11 EP - 13 VL - 348 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.11.016/ DO - 10.1016/j.crma.2009.11.016 LA - en ID - CRMATH_2010__348_1-2_11_0 ER -
%0 Journal Article %A Cartwright, Donald I. %A Steger, Tim %T Enumeration of the 50 fake projective planes %J Comptes Rendus. Mathématique %D 2010 %P 11-13 %V 348 %N 1-2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.11.016/ %R 10.1016/j.crma.2009.11.016 %G en %F CRMATH_2010__348_1-2_11_0
Cartwright, Donald I.; Steger, Tim. Enumeration of the 50 fake projective planes. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 11-13. doi : 10.1016/j.crma.2009.11.016. http://www.numdam.org/articles/10.1016/j.crma.2009.11.016/
[1] The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos. Soc., Volume 64 (1968), pp. 299-301
[2] Application of the Bruhat–Tits tree of to some groups, J. Aust. Math. Soc., Volume 64 (1998), pp. 329-344
[3] F. Hirzebruch, Automorphe Formen und der Satz von Riemann–Roch, in: 1958 Symposium Internacional de Topologia Algebraica, UNESCO, pp. 129–144
[4] The strong rigidity theorem for non-Archimedean uniformization, Tohoku Math. J., Volume 50 (1998), pp. 537-555
[5] A fake projective plane with an order 7 automorphism, Topology, Volume 45 (2006), pp. 919-927
[6] Quotients of fake projective planes, Geom. Topol., Volume 12 (2008), pp. 2497-2515
[7] On real structures on rigid surfaces, Izv. Math., Volume 66 (2002), pp. 133-150
[8] Sur la rigidité de certains groupes fondamentaux, l'arithméticité des réseaux hyperboliques complexes, et les « faux plans projectifs », Invent. Math., Volume 153 (2003), pp. 105-143
[9] An algebraic surface with K ample, , , Amer. J. Math., Volume 101 (1979), pp. 233-244
[10] Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math., Volume 69 (1989), pp. 91-117
[11] Fake projective planes, Invent. Math., Volume 168 (2007), pp. 321-370
[12] G. Prasad, S.-K. Yeung, Fake projective planes, Addendum, in press
[13] R. Rémy, Covolume des groupes S-arithmétiques et faux plans projectifs [d'après Mumford, Prasad, Klingler, Yeung, Prasad–Yeung], Séminaire Bourbaki, 60ème année, 2007–2008, no. 984
[14] Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA, Volume 74 (1977), pp. 1798-1799
[15] Integrality and arithmeticity of co-compact lattices corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math., Volume 8 (2004), pp. 107-130
[16] S.-K. Yeung, Classification of fake projective planes, in: Handbook of Geometric Analysis, vol. 2, in press
Cité par Sources :