[Une méthode d'accélération de type Aitken appliquée à la reconstruction de données frontières manquantes sur le problème de Cauchy–Helmholtz]
Cette Note concerne le problème mal-posé de Cauchy–Helmholtz. Ce problème est interprété en terme d'équation d'interface qu'on résout via une méthode d'Aitken–Schwarz. Des essais numériques illustrent l'efficacité de cette méthode.
This Note is concerned with the severely ill-posed Cauchy–Helmholtz problem. This Cauchy problem being rephrased through an “interfacial” equation, we resort to an Aitken–Schwarz method for solving this equation. Numerical trials highlight the efficiency of the present method.
Accepté le :
Publié le :
@article{CRMATH_2010__348_1-2_93_0, author = {Ben Abda, Amel and Ben Fatma, Riadh and Tromeur-Dervout, Damien}, title = {An {Aitken-like} acceleration method applied to missing boundary data reconstruction for the {Cauchy{\textendash}Helmholtz} problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--97}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.11.010/} }
TY - JOUR AU - Ben Abda, Amel AU - Ben Fatma, Riadh AU - Tromeur-Dervout, Damien TI - An Aitken-like acceleration method applied to missing boundary data reconstruction for the Cauchy–Helmholtz problem JO - Comptes Rendus. Mathématique PY - 2010 SP - 93 EP - 97 VL - 348 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.11.010/ DO - 10.1016/j.crma.2009.11.010 LA - en ID - CRMATH_2010__348_1-2_93_0 ER -
%0 Journal Article %A Ben Abda, Amel %A Ben Fatma, Riadh %A Tromeur-Dervout, Damien %T An Aitken-like acceleration method applied to missing boundary data reconstruction for the Cauchy–Helmholtz problem %J Comptes Rendus. Mathématique %D 2010 %P 93-97 %V 348 %N 1-2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.11.010/ %R 10.1016/j.crma.2009.11.010 %G en %F CRMATH_2010__348_1-2_93_0
Ben Abda, Amel; Ben Fatma, Riadh; Tromeur-Dervout, Damien. An Aitken-like acceleration method applied to missing boundary data reconstruction for the Cauchy–Helmholtz problem. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 93-97. doi : 10.1016/j.crma.2009.11.010. http://www.numdam.org/articles/10.1016/j.crma.2009.11.010/
[1] Missing boundary data recovering for the Helmholtz problem, C. R. Mecanique, Volume 335 (2007), pp. 787-792
[2] Solving the Helmholtz equation at high-wave numbers on a parallel computer with a shared virtual memory, Internat. J. Supercomput. Appl., Volume 9 (1995) no. 1, pp. 18-28
[3] Regularisation of Inverse Problems, Kluwer Academic, Dordrecht, The Netherlands, 1996
[4] A. Frullone, D. Tromeur-Dervout, Adaptive acceleration of the Aitken–Schwarz Domain Decomposition on nonuniform nonmatching grids, preprint CDCSP07-00, submitted for publication
[5] Acceleration of the Schwarz method for elliptic problems, SIAM J. Sci. Comput., Volume 26 (2005), pp. 1871-1893
[6] Two level domain decomposition for multi-cluster (Chan, H.K.T.; Kako, T.; Pironneau, O., eds.), Proc. Int. Conf. on Domain Decomposition Methods DD12, DDM org, 2001, pp. 325-340
[7] On some Aitken-like acceleration of the Schwarz method, Internat. J. Numer. Methods Fluids, Volume 40 (2002) no. 12, pp. 1493-1513
[8] An alternating method for Cauchy problems for Helmholtz-type operators in non-homogeneous medium, IMA J. Appl. Math., Volume 74 (2009) no. 1, pp. 62-73
[9] An iterative method for solving the Cauchy problem for elliptic equations, Comput. Meth. Math. Phys., Volume 31 (1991), pp. 45-52
[10] Documentation MELINA, ENSTA, May 2000 http://perso.univ-rennes1.fr/daniel.martin/melina/
[11] F. Nataf, Quasi Optimal Interface Conditions in Domain Decomposition Methods. Application to Problems with Extreme Contrasts in the Coefficients, R.I. 514, CMAP, Ecole Polytechnique, 2003
[12] Remarques sur l'observabilité pour de l'équation de Laplace, ESAIM Control Optim. Calc. Var., Volume 9 (2003), pp. 621-635 (Remarks on observability for the Laplace equation, in French; English, French summaries)
[13] Approximate solution of a Cauchy problem for the Helmholtz equation, Inverse Problems, Volume 22 (2006), pp. 975-989
[14] Aitken–Schwarz method: acceleration of the convergence of the Schwarz method, Domain Decomposition Methods: Theory and Applications, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 25, Gakkotosho, Tokyo, 2006, pp. 37-64
[15] Application of BEM-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, J. Acoust. Soc. Am., Volume 104 (1998), pp. 2054-2060
Cité par Sources :