Probabilitiés
Processus dual et inverse d'un ARMA et application à la réversibilité temporelle
Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 85-88.

Pour la classe des processus autorégressifs-moyenne mobile, nous étudions le lien entre les processus dual et inverse. Nous établissons explicitement la représentation causale et inversible ARMA(q,p) du processus inverse d'un ARMA(p,q) canonique. De plus, nous montrons que cette représentation est forte si et seulement si le processus générateur est gaussien. Une application pour la réversibilité temporelle est traitée avec quelques exemples d'illustration.

For the class of autoregressive-moving average (ARMA) processes, the relationship between the dual and the inverse processes is examined. It is shown that the inverse process generated by a causal and invertible ARMA(p,q) process is a causal and invertible ARMA(q,p). Moreover, it is established that this representation is strong if and only if the generating process is Gaussian. Some examples and applications to time reversibility are given to illustrate these theoretical results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.11.002
El Ghini, Ahmed 1

1 Équippe / LIFL, CNRS-UMR 8022, université Lille 1, 59655 Villeneuve d'Ascq cedex, France
@article{CRMATH_2010__348_1-2_85_0,
     author = {El Ghini, Ahmed},
     title = {Processus dual et inverse d'un {ARMA} et application \`a la r\'eversibilit\'e temporelle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {85--88},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.002},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.11.002/}
}
TY  - JOUR
AU  - El Ghini, Ahmed
TI  - Processus dual et inverse d'un ARMA et application à la réversibilité temporelle
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 85
EP  - 88
VL  - 348
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.11.002/
DO  - 10.1016/j.crma.2009.11.002
LA  - fr
ID  - CRMATH_2010__348_1-2_85_0
ER  - 
%0 Journal Article
%A El Ghini, Ahmed
%T Processus dual et inverse d'un ARMA et application à la réversibilité temporelle
%J Comptes Rendus. Mathématique
%D 2010
%P 85-88
%V 348
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.11.002/
%R 10.1016/j.crma.2009.11.002
%G fr
%F CRMATH_2010__348_1-2_85_0
El Ghini, Ahmed. Processus dual et inverse d'un ARMA et application à la réversibilité temporelle. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 85-88. doi : 10.1016/j.crma.2009.11.002. http://www.numdam.org/articles/10.1016/j.crma.2009.11.002/

[1] Aggarwal, G.; Roy-Chowdhury, A.K.; Chellappa, R. A system identification approach for video-based face recognition, Proceedings of the 17th International Conference on Pattern Recognition, ICPR'04, Cambridge, UK, 2004

[2] Battaglia, F. Inverse autocovariances and a measure of linear determinism for a stationary process, J. Time Series Anal., Volume 4 (1983), pp. 79-87

[3] Bhansali, R.J. Estimation of the order of a moving average model from autoregressive and window estimates of the inverse correlation function, J. Time Series Anal., Volume 4 (1983), pp. 137-162

[4] Breidt, F.J.; Davis, R.A. Time-reversibility, identifiability and independence of innovations for stationary time series, J. Time Series Anal., Volume 13 (1991), pp. 377-390

[5] Breidt, F.J.; Davis, R.A.; Trindade, A.A. Least absolute deviation estimation for all-pass time series models, Ann. Statist., Volume 29 (2001), pp. 919-946

[6] Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods, Springer-Verlag, New York, 1991

[7] Cheng, Q. On time-reversibility of linear processes, Biometrika, Volume 88 (1999), pp. 298-307

[8] Cleveland, W.S. The inverse autocorrelations of a time series and their applications, Technometrics, Volume 14 (1972), pp. 277-298

[9] El Ghini, A. Contribution à l'identification de modèles de séries temporelles, 2008 www.lifl.fr/~elghini/Publications/these.pdf (Thèse de doctorat disponible au:)

[10] El Ghini, A.; Francq, C. Asymptotic relative efficiency of goodness-of-fit tests based on inverse and ordinary autocorrelations, J. Time Series Anal., Volume 27 (2006), pp. 843-855

[11] Francq, C.; Roy, R.; Zakoïan, J.-M. Diagnostic checking in ARMA models with uncorrelated errors, J. Amer. Statist. Assoc., Volume 100 (2005), pp. 532-544

[12] McLeod, A.I. Duality and other properties of multiplicative seasonal autoregressive-moving average models, Biometrika, Volume 71 (1984), pp. 207-211

[13] Peña, D.; Maravall, A. Interpolations, outliers and inverse autocorrelations, Comm. Stat. Theory Methods, Volume 20 (1991) no. 10, pp. 3175-3186

[14] Ramsey, J.B.; Rothman, P. Time irreversibility and business cycle asymmetry, J. Money, Credit Banking, Volume 28 (1996) no. 1, pp. 1-21

[15] Veeraraghavan, A.; Roy-Chowdhury, A.K.; Chellappa, R. Matching shape sequences in video with applications in human movement analysis, IEEE Trans. Pattern Anal. Machine Intell., Volume 27 (2005) no. 12, pp. 1896-1909

Cité par Sources :