Probability Theory
Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z
[Un résultat d'unicité pour une équation différentielle stochastique rétrograde dont le générateur g est monotone en y et uniformément continue en z]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 89-92.

Dans cette Note on démontre que si g est continue, monotone, de croissance quelconque en y, g uniformément continue en z et (g(t,0,0))t[0,T] est de carré intégrable, alors pour toute condition finale ξ de carré intégrable, en dimension un, l'équation différentielle stochastique rétrograde (BSDE) de générateur g, a une solution unique. Ce résultat généralise des résultats connus dans le cas de la dimension un.

In this Note, we prove that if g is continuous, monotonic and has a general growth in y, g is uniformly continuous in z, and (g(t,0,0))t[0,T] is square integrable, then for each square integrable terminal condition ξ, the one-dimensional backward stochastic differential equation (BSDE) with the generator g has a unique solution. This generalizes some corresponding (one-dimensional) results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.023
Fan, Sheng-Jun 1 ; Jiang, Long 1

1 College of Sciences, China University of Mining & Technology, Xuzhou, Jiangsu 221116, PR China
@article{CRMATH_2010__348_1-2_89_0,
     author = {Fan, Sheng-Jun and Jiang, Long},
     title = {Uniqueness result for the {BSDE} whose generator is monotonic in \protect\emph{y} and uniformly continuous in \protect\emph{z}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {89--92},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.10.023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.023/}
}
TY  - JOUR
AU  - Fan, Sheng-Jun
AU  - Jiang, Long
TI  - Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 89
EP  - 92
VL  - 348
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.023/
DO  - 10.1016/j.crma.2009.10.023
LA  - en
ID  - CRMATH_2010__348_1-2_89_0
ER  - 
%0 Journal Article
%A Fan, Sheng-Jun
%A Jiang, Long
%T Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z
%J Comptes Rendus. Mathématique
%D 2010
%P 89-92
%V 348
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.023/
%R 10.1016/j.crma.2009.10.023
%G en
%F CRMATH_2010__348_1-2_89_0
Fan, Sheng-Jun; Jiang, Long. Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 89-92. doi : 10.1016/j.crma.2009.10.023. http://www.numdam.org/articles/10.1016/j.crma.2009.10.023/

[1] Bahlali, K. Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2001), pp. 481-486

[2] Briand, Ph.; Delyon, B.; Hu, Y.; Pardoux, E.; Stoica, L. Lp solutions of backward stochastic differential equations, Stochastic Processes and Their Applications, Volume 108 (2003), pp. 109-129

[3] Briand, Ph.; Hu, Y. Quadratic BSDEs with convex generators and unbounded terminal conditions, Probability Theory and Related Fields, Volume 141 (2008), pp. 543-567

[4] Briand, Ph.; Lepetier, J.P.; San Martin, J. One-dimensional BSDE's whose coefficient is monotonic in y and non-Lipschitz in z, Bernoulli, Volume 13 (2007) no. 1, pp. 80-91

[5] Crandall, M.G. Viscosity solutions — a primer (Capuzzo Dolcetta, I.; Lions, P.L., eds.), Viscosity Solutions and Applications, Lecture Notes in Mathematics, vol. 1660, Springer, Berlin, 1997, pp. 1-43

[6] He, S.; Wang, J.; Yan, J. Semimartingal Theory and Stochastic Calculus, Science Press and CRC Press, Inc., 1992

[7] Jia, G. A uniqueness theorem for the solution of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 439-444

[8] Kobylanski, M. Backward stochastic differential equations and partial equations with quadratic growth, Ann. Probab., Volume 28 (2000), pp. 259-276

[9] Lepetier, J.P.; San Martin, J. Backward stochastic differential equations with continuous coefficient, Statistics and Probability Letters, Volume 32 (1997), pp. 425-430

[10] Mao, X. Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process and Their Applications, Volume 58 (1995), pp. 281-292

[11] Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation, Systems Control Letters, Volume 14 (1990), pp. 55-61

[12] Pardoux, E. BSDEs, weak convergence and homogenization of semilinear PDEs, Montreal, QC, 1998, Kluwer Academic Publishers, Dordrecht (1999), pp. 503-549

[13] Peng, S. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer's type, Probability Theory and Related Fields, Volume 113 (1999), pp. 473-499

Cité par Sources :

Supported by the National Natural Science Foundation of China (No. 10671205), National Basic Research Program of China (No. 2007CB814901), Youth Foundation of China University of Mining & Technology (Nos. 2006A041 and 2007A029) and Qing Lan Project.