Mathematical Economics/Partial Differential Equations
Obstacle problem for Arithmetic Asian options
[Problème de l'obstacle pour l'option américain asiatique à moyenne arithmétique]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1443-1446.

On démontre l'existence, la régularité et une formule de représentation de Feynman–Kač de la solution forte d'un problème avec frontière libre. Ce type de problème on le retrouve en finance pour évaluer le prix d'une option asiatique à moyenne arithmétique de style américain.

We prove existence, regularity and a Feynman–Kač representation formula of the strong solution to the free boundary problem arising in the financial problem of the pricing of the American Asian option with arithmetic average.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.019
Monti, Laura 1 ; Pascucci, Andrea 1

1 Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
@article{CRMATH_2009__347_23-24_1443_0,
     author = {Monti, Laura and Pascucci, Andrea},
     title = {Obstacle problem for {Arithmetic} {Asian} options},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1443--1446},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/}
}
TY  - JOUR
AU  - Monti, Laura
AU  - Pascucci, Andrea
TI  - Obstacle problem for Arithmetic Asian options
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1443
EP  - 1446
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/
DO  - 10.1016/j.crma.2009.10.019
LA  - en
ID  - CRMATH_2009__347_23-24_1443_0
ER  - 
%0 Journal Article
%A Monti, Laura
%A Pascucci, Andrea
%T Obstacle problem for Arithmetic Asian options
%J Comptes Rendus. Mathématique
%D 2009
%P 1443-1446
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/
%R 10.1016/j.crma.2009.10.019
%G en
%F CRMATH_2009__347_23-24_1443_0
Monti, Laura; Pascucci, Andrea. Obstacle problem for Arithmetic Asian options. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1443-1446. doi : 10.1016/j.crma.2009.10.019. http://www.numdam.org/articles/10.1016/j.crma.2009.10.019/

[1] Barucci, E.; Polidoro, S.; Vespri, V. Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 475-497

[2] Dai, M.; Xu, Z.Q. Optimal redeeming strategy of stock loans, 2009 | arXiv

[3] Di Francesco, M.; Pascucci, A. On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express (2005), pp. 77-116

[4] Di Francesco, M.; Pascucci, A.; Polidoro, S. The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 464 (2008), pp. 155-176

[5] M. Frentz, K. Nyström, A. Pascucci, S. Polidoro, Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options, Math. Ann. (2009), in press

[6] Friedman, A. Stochastic Differential Equations and Applications, vol. 2., Probability and Mathematical Statistics, vol. 28, Academic Press, 1976

[7] Friedman, A.; Shen, W. A variational inequality approach to financial valuation of retirement benefits based on salary, Finance Stoch., Volume 6 (2002), pp. 273-302

[8] Ingersoll, J.E. Theory of Financial Decision Making, Blackwell, Oxford, 1987

[9] Lanconelli, E.; Polidoro, S. On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, Volume 52 (1994), pp. 29-63 Partial differential equations, II (Turin, 1993)

[10] K. Nyström, A. Pascucci, S. Polidoro, Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators, 2009, submitted for publication

[11] Pascucci, A. Free boundary and optimal stopping problems for American Asian options, Finance Stoch., Volume 12 (2008), pp. 21-41

[12] Peskir, G.; Shiryaev, A. Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2006

[13] Rogers, L.C.G.; Shi, Z. The value of an Asian option, J. Appl. Probab., Volume 32 (1995), pp. 1077-1088

Cité par Sources :