Topology
The image of Singer's fourth transfer
[L'image du quatrième transfert de Singer]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1415-1418.

Dans cette Note on achève la description du quatriéme transfert de Singer, complétant ainsi le travail de nombreux auteurs. Plus précisement on montre que chaque élément de la famille {pi|i0} appartient à l'image du quatriéme transfert. Combinant cela avec des résultats antérieurs de R. Bruner, L.M. Hà, T.N. Nam, et du premier auteur, on en déduit que l'image du transfert algébrique contient chaque élément des quatre familles {di|i0}, {ei|i0}, {fi|i0}, et {pi|i0}, et ne contient aucun élément des trois familles {gi|i1}, {D3(i)|i0}, and {pi|i0}.

La méthode utilisée pour montrer que des éléments sont dans l'image du transfert peut être appliquée non seulement à la famille pi mais aussi aux familles di, ei, and fi.

We complete in this Note the description of Singer's fourth transfer, already studied by many authors. More precisely, we show that each element of the family {pi|i0} belongs to the image of this fourth transfer. Combining this with previous results by R. Bruner, L.M. Hà, T.N. Nam and the first author, we deduce that the image of the algebraic transfer contains all the elements of the families {di|i0}, {ei|i0}, {fi|i0} and {pi|i0}, but none from the families {gi|i1}, {D3(i)|i0} and {pi|i0}.

The method used to prove that elements are in the transfer's image can be applied not only to the family of pi's but to the families of di's, ei's and fi's as well.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.018
Hu'ng, Nguyễn H.V. 1 ; Quy`nh, Võ T.N. 1

1 Department of Mathematics, Vietnam National University, Hanoi, 334 Nguyễn Trãi Street, Hanoi, Vietnam
@article{CRMATH_2009__347_23-24_1415_0,
     author = {Hu'ng, Nguyễn H.V. and Quy`nh, V\~o T.N.},
     title = {The image of {Singer's} fourth transfer},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1415--1418},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.018/}
}
TY  - JOUR
AU  - Hu'ng, Nguyễn H.V.
AU  - Quy`nh, Võ T.N.
TI  - The image of Singer's fourth transfer
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1415
EP  - 1418
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.018/
DO  - 10.1016/j.crma.2009.10.018
LA  - en
ID  - CRMATH_2009__347_23-24_1415_0
ER  - 
%0 Journal Article
%A Hu'ng, Nguyễn H.V.
%A Quy`nh, Võ T.N.
%T The image of Singer's fourth transfer
%J Comptes Rendus. Mathématique
%D 2009
%P 1415-1418
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.018/
%R 10.1016/j.crma.2009.10.018
%G en
%F CRMATH_2009__347_23-24_1415_0
Hu'ng, Nguyễn H.V.; Quy`nh, Võ T.N. The image of Singer's fourth transfer. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1415-1418. doi : 10.1016/j.crma.2009.10.018. http://www.numdam.org/articles/10.1016/j.crma.2009.10.018/

[1] Boardman, J.M. Modular representations on the homology of powers of real projective space, Algebraic Topology: Oaxtepec 1991, Contemp. Math., vol. 146, Amer Math. Soc., Providence, RI, 1993, pp. 49-70

[2] Bruner, R.R.; Hà, L.M.; Hu'ng, N.H.V. On behavior of the algebraic transfer, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 473-487

[3] Hà, L.M. Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Geom. Topol. Publ. Conventry, Volume 11 (2007), pp. 81-105

[4] Hu'ng, N.H.V. The weak conjecture on spherical classes, Math. Z., Volume 231 (1999), pp. 727-743

[5] Hu'ng, N.H.V. The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 4065-4089

[6] Kahn, D.S.; Priddy, S.B. The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc., Volume 83 (1978), pp. 103-111

[7] M. Kameko, Products of projective spaces as Steenrod modules, Thesis, Johns Hopkins University, 1990

[8] Lin, W.H.; Mahowald, M. The Adams spectral sequence for Minami's theorem, Evanston, II, 1997 (Contemp. Math.), Volume vol. 220, Amer Math. Soc., Providence, RI (1998), pp. 143-177

[9] Liulevicius, A. The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc., Volume 42 (1962)

[10] May, J.P. A General Algebraic Approach to Steenrod Operations, Lecture Notes in Math., vol. 168, Springer-Verlag, 1970 (pp. 153–231)

[11] Minami, N. The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2325-2351

[12] Nam, T.N. Transfert algébrique et représentation modulaire du groupe linéare, Ann. Inst. Fourier, Volume 58 (2008), pp. 1785-1837

[13] Palmieri, J.H. Quillen stratification for the Steenrod algebra, Ann. of Math., Volume 149 (1999), pp. 421-449

[14] Singer, W.M. The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523

[15] N. Sum, The hit problem for the polynomial algebra of four variables, preprint, 2007, 240 pp

[16] Tangora, M.C. On the cohomology of the Steenrod algebra, Math. Z., Volume 116 (1970), pp. 18-64

[17] Zachariou, A. A polynomial subalgebra of the cohomology of the Steenrod algebra, Publ. Res. Inst. Math. Sci., Volume 9 (1973/74), pp. 157-164

Cité par Sources :

The work was supported in part by a grant of the NAFOSTED.