Mathematical Problems in Mechanics
A two-scale model for the wave equation with oscillating coefficients and data
[Un modèle à deux échelles pour l'équation des ondes à coefficients et données oscillants]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1439-1442.

Nous introduisons une transformation à deux échelles en espace et en temps destinée à capturer à la fois les basses fréquences et les ondes de Bloch qui apparaissent lors du processus asymptotique d'homogénéisation de l'équation des ondes à coefficients périodiques. La solution du modèle qui en résulte comprend les ondes de Bloch et une contribution basse fréquence qui est la solution du modèle homogénéisé de l'équation des ondes. On établit aussi les équations de transport vérifiées par les coefficients des ondes de Bloch.

We introduce a time-space two-scale transform designed to capture the high and low frequency waves in the asymptotics of the periodic homogenization of the wave equation. The asymptotical solution is the sum of the solution of known homogenized equations and of Bloch waves. We also derive the transport equations satisfied by the Bloch wave coefficients.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.017
Brassart, Matthieu 1 ; Lenczner, Michel 2

1 UMR 6623, Laboratoire de mathématiques de Besançon, Université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France
2 FEMTO-ST, Université Technologique de Belfort-Montbeliard, 26, chemin de l'Epitaphe, 25030 Besançon, France
@article{CRMATH_2009__347_23-24_1439_0,
     author = {Brassart, Matthieu and Lenczner, Michel},
     title = {A two-scale model for the wave equation with oscillating coefficients and data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1439--1442},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.017/}
}
TY  - JOUR
AU  - Brassart, Matthieu
AU  - Lenczner, Michel
TI  - A two-scale model for the wave equation with oscillating coefficients and data
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1439
EP  - 1442
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.017/
DO  - 10.1016/j.crma.2009.10.017
LA  - en
ID  - CRMATH_2009__347_23-24_1439_0
ER  - 
%0 Journal Article
%A Brassart, Matthieu
%A Lenczner, Michel
%T A two-scale model for the wave equation with oscillating coefficients and data
%J Comptes Rendus. Mathématique
%D 2009
%P 1439-1442
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.017/
%R 10.1016/j.crma.2009.10.017
%G en
%F CRMATH_2009__347_23-24_1439_0
Brassart, Matthieu; Lenczner, Michel. A two-scale model for the wave equation with oscillating coefficients and data. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1439-1442. doi : 10.1016/j.crma.2009.10.017. http://www.numdam.org/articles/10.1016/j.crma.2009.10.017/

[1] Allaire, G. Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518

[2] Allaire, G.; Conca, C. Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995) no. 5, pp. 557-562

[3] Francfort, G.A.; Murat, F. Oscillations and energy densities in the wave equation, Comm. Partial Differential Equations, Volume 17 (1992) no. 11–12, pp. 1785-1865

[4] M. Kader, Contributions to modeling and control of distributed intelligent systems: Application to beam vibration control, PhD thesis, Université de Franche-Comté, France, 2000

[5] Lenczner, M.; Kader, M.; Perrier, P. Two-scale model of the wave equation with oscillating coefficients, C. R. Acad. Sci. II, Mec. Phys. Astron., Volume 328 (2000) no. 4, pp. 335-340

Cité par Sources :