Soit Γ un groupe dénombrable infini qui agit naturellement sur . Nous introduisons une obstruction, proche de la dimension moyenne, au fait que et soit Hölder conjugués.
Let Γ be a infinite countable group which acts naturally on . We introduce a modification of mean dimension which is an obstruction for and to be Hölder conjugates.
Accepté le :
Publié le :
@article{CRMATH_2009__347_23-24_1389_0, author = {Gournay, Antoine}, title = {On a {H\"older} covariant version of mean dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {1389--1392}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.014/} }
TY - JOUR AU - Gournay, Antoine TI - On a Hölder covariant version of mean dimension JO - Comptes Rendus. Mathématique PY - 2009 SP - 1389 EP - 1392 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.014/ DO - 10.1016/j.crma.2009.10.014 LA - en ID - CRMATH_2009__347_23-24_1389_0 ER -
%0 Journal Article %A Gournay, Antoine %T On a Hölder covariant version of mean dimension %J Comptes Rendus. Mathématique %D 2009 %P 1389-1392 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.10.014/ %R 10.1016/j.crma.2009.10.014 %G en %F CRMATH_2009__347_23-24_1389_0
Gournay, Antoine. On a Hölder covariant version of mean dimension. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1389-1392. doi : 10.1016/j.crma.2009.10.014. http://www.numdam.org/articles/10.1016/j.crma.2009.10.014/
[1] Geometric Nonlinear Functional Analysis, vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000
[2] Width of balls, 2008 (or p. 16; Houston J. Math., in press) | arXiv | HAL
[3] Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., Volume 2 (1999) no. 4, pp. 323-415
[4] Mean topological dimension, Israel J. Math., Volume 115 (2000), pp. 1-24
[5] Macroscopic dimension of the -ball with respect to the -norm, J. Math. Kyoto Univ., Volume 48 (2008) no. 2, pp. 445-454
Cité par Sources :