Algebraic Geometry
The primitive cohomology lattice of a complete intersection
[La cohomologie primitive d'une intersection complète]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1399-1402.

Nous décrivons le réseau de cohomologie primitive d'une intersection complète lisse de dimension paire dans l'espace projectif.

We describe the primitive cohomology lattice of a smooth even-dimensional complete intersection in projective space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.013
Beauville, Arnaud 1

1 Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, université de Nice, parc Valrose, 06108 Nice cedex 2, France
@article{CRMATH_2009__347_23-24_1399_0,
     author = {Beauville, Arnaud},
     title = {The primitive cohomology lattice of a complete intersection},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1399--1402},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/}
}
TY  - JOUR
AU  - Beauville, Arnaud
TI  - The primitive cohomology lattice of a complete intersection
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1399
EP  - 1402
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/
DO  - 10.1016/j.crma.2009.10.013
LA  - en
ID  - CRMATH_2009__347_23-24_1399_0
ER  - 
%0 Journal Article
%A Beauville, Arnaud
%T The primitive cohomology lattice of a complete intersection
%J Comptes Rendus. Mathématique
%D 2009
%P 1399-1402
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/
%R 10.1016/j.crma.2009.10.013
%G en
%F CRMATH_2009__347_23-24_1399_0
Beauville, Arnaud. The primitive cohomology lattice of a complete intersection. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1399-1402. doi : 10.1016/j.crma.2009.10.013. http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/

[1] Deligne, P. Cohomologie des intersections complètes. SGA7 II, Exp. XI, Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 39-61

[2] Deligne, P. Le théorème de Noether. SGA7 II, Exp. XIX, Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 328-340

[3] Libgober, A.; Wood, J. On the topological structure of even-dimensional complete intersections, Trans. Amer. Math. Soc., Volume 267 (1981) no. 2, pp. 637-660

[4] Persson, U. An introduction to the geography of surfaces of general type, Proc. Sympos. Pure Math. I, vol. 46, Algebraic Geometry, Bowdoin, 1985, pp. 195-218

[5] Serre, J.-P. Cours d'arithmétique, PUF, Paris, 1977

[6] Wall, C.T.C. On the orthogonal groups of unimodular quadratic forms, Math. Ann., Volume 147 (1962), pp. 328-338

Cité par Sources :