Nous décrivons le réseau de cohomologie primitive d'une intersection complète lisse de dimension paire dans l'espace projectif.
We describe the primitive cohomology lattice of a smooth even-dimensional complete intersection in projective space.
Accepté le :
Publié le :
@article{CRMATH_2009__347_23-24_1399_0, author = {Beauville, Arnaud}, title = {The primitive cohomology lattice of a complete intersection}, journal = {Comptes Rendus. Math\'ematique}, pages = {1399--1402}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/} }
TY - JOUR AU - Beauville, Arnaud TI - The primitive cohomology lattice of a complete intersection JO - Comptes Rendus. Mathématique PY - 2009 SP - 1399 EP - 1402 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/ DO - 10.1016/j.crma.2009.10.013 LA - en ID - CRMATH_2009__347_23-24_1399_0 ER -
%0 Journal Article %A Beauville, Arnaud %T The primitive cohomology lattice of a complete intersection %J Comptes Rendus. Mathématique %D 2009 %P 1399-1402 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/ %R 10.1016/j.crma.2009.10.013 %G en %F CRMATH_2009__347_23-24_1399_0
Beauville, Arnaud. The primitive cohomology lattice of a complete intersection. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1399-1402. doi : 10.1016/j.crma.2009.10.013. http://www.numdam.org/articles/10.1016/j.crma.2009.10.013/
[1] Cohomologie des intersections complètes. SGA7 II, Exp. XI, Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 39-61
[2] Le théorème de Noether. SGA7 II, Exp. XIX, Lecture Notes in Math., vol. 340, Springer, Berlin, 1973, pp. 328-340
[3] On the topological structure of even-dimensional complete intersections, Trans. Amer. Math. Soc., Volume 267 (1981) no. 2, pp. 637-660
[4] An introduction to the geography of surfaces of general type, Proc. Sympos. Pure Math. I, vol. 46, Algebraic Geometry, Bowdoin, 1985, pp. 195-218
[5] Cours d'arithmétique, PUF, Paris, 1977
[6] On the orthogonal groups of unimodular quadratic forms, Math. Ann., Volume 147 (1962), pp. 328-338
Cité par Sources :