Nous étudions des inégalités de normes de convolutions dans les espaces de Lebesgue et de Lorentz. En premier lieu, nous améliorons l'inégalité bien connue de O'Neil sur les opérateurs de convolution et nous établissons une minoration. En second lieu, nous donnons une estimation du type de Young–O'Neil dans les espaces de Lorentz, à savoir . Enfin, nous présentons des estimations similaires dans les espaces de Lorentz à poids.
We study norm convolution inequalities in Lebesgue and Lorentz spaces. First, we improve the well-known O'Neil's inequality for the convolution operators and prove corresponding estimate from below. Second, we obtain Young–O'Neil-type estimate in the Lorentz spaces for the limit value parameters, i.e., . Finally, similar estimates in the weighted Lorentz spaces are presented.
Accepté le :
Publié le :
@article{CRMATH_2009__347_23-24_1385_0, author = {Nursultanov, Erlan and Tikhonov, Sergey and Tleukhanova, Nazerke}, title = {Norm inequalities for convolution operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1385--1388}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/} }
TY - JOUR AU - Nursultanov, Erlan AU - Tikhonov, Sergey AU - Tleukhanova, Nazerke TI - Norm inequalities for convolution operators JO - Comptes Rendus. Mathématique PY - 2009 SP - 1385 EP - 1388 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/ DO - 10.1016/j.crma.2009.10.003 LA - en ID - CRMATH_2009__347_23-24_1385_0 ER -
%0 Journal Article %A Nursultanov, Erlan %A Tikhonov, Sergey %A Tleukhanova, Nazerke %T Norm inequalities for convolution operators %J Comptes Rendus. Mathématique %D 2009 %P 1385-1388 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/ %R 10.1016/j.crma.2009.10.003 %G en %F CRMATH_2009__347_23-24_1385_0
Nursultanov, Erlan; Tikhonov, Sergey; Tleukhanova, Nazerke. Norm inequalities for convolution operators. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1385-1388. doi : 10.1016/j.crma.2009.10.003. http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/
[1] A note on spaces and Sobolev embeddings, Indiana Univ. Math. J., Volume 52 (2003), pp. 1215-1230
[2] Weak- and BMO, Ann. Math. (2), Volume 113 (1981), pp. 601-611
[3] Interpolation of Operators, Academic Press, 1988
[4] On a convolution theorem for spaces, Trans. Amer. Math. Soc., Volume 164 (1972), pp. 255-265
[5] Convolution of functions, Proc. Amer. Math. Soc., Volume 32 (1972) no. 1, pp. 237-240
[6] Banach convolution algebras of Wiener type, Budapest, 1980 (Colloq. Math. Soc. János Bolyai), Volume vol. 35, North-Holland, Amsterdam (1983), pp. 509-524
[7] On spaces, Enseign. Math. (2), Volume 12 (1966), pp. 249-276
[8] Convolution theorems with weights, Trans. Amer. Math. Soc., Volume 280 (1983) no. 1, pp. 207-219
[9] E. Nursultanov, S. Tikhonov, Convolution inequalities in Lorentz spaces, online access: http://www.crm.cat, preprint No. 801, 2008, submitted for publication
[10] E. Nursultanov, S. Tikhonov, Net spaces and boundedness of integral operators, online access: http://www.crm.cat, preprint No. 800, 2008, submitted for publication
[11] E. Nursultanov, S. Tikhonov, N. Tleukhanova, Norm convolution inequalities in Lebesgue spaces, online access: http://www.crm.cat, preprint No. 876, 2009, submitted for publication
[12] Convolution operators and spaces, Duke Math. J., Volume 30 (1963), pp. 129-142
[13] Some Topics in the Theory of Integral Convolution Operators, Dalnauka, Vladivostok, 2000
[14] Some remarks on convolution operators and spaces, Duke Math. J., Volume 36 (1969), pp. 647-658
Cité par Sources :