Harmonic Analysis
Norm inequalities for convolution operators
[Inégalités de normes pour les opérateurs de convolution]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1385-1388.

Nous étudions des inégalités de normes de convolutions dans les espaces de Lebesgue et de Lorentz. En premier lieu, nous améliorons l'inégalité bien connue de O'Neil sur les opérateurs de convolution et nous établissons une minoration. En second lieu, nous donnons une estimation du type de Young–O'Neil dans les espaces de Lorentz, à savoir KfL(p,h1)L(p,h2). Enfin, nous présentons des estimations similaires dans les espaces de Lorentz à poids.

We study norm convolution inequalities in Lebesgue and Lorentz spaces. First, we improve the well-known O'Neil's inequality for the convolution operators and prove corresponding estimate from below. Second, we obtain Young–O'Neil-type estimate in the Lorentz spaces for the limit value parameters, i.e., KfL(p,h1)L(p,h2). Finally, similar estimates in the weighted Lorentz spaces are presented.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.10.003
Nursultanov, Erlan 1 ; Tikhonov, Sergey 2 ; Tleukhanova, Nazerke 3

1 Kazakh Branch of Moscow State University, Munatpasova, 7, 010010 Astana, Kazakhstan
2 ICREA and Centre de Recerca Matemàtica, Apartat 50, 08193 Bellaterra, Barcelona, Spain
3 Gumilyov Eurasian National University, Munatpasova, 5, 010008 Astana, Kazakhstan
@article{CRMATH_2009__347_23-24_1385_0,
     author = {Nursultanov, Erlan and Tikhonov, Sergey and Tleukhanova, Nazerke},
     title = {Norm inequalities for convolution operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1385--1388},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.10.003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/}
}
TY  - JOUR
AU  - Nursultanov, Erlan
AU  - Tikhonov, Sergey
AU  - Tleukhanova, Nazerke
TI  - Norm inequalities for convolution operators
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1385
EP  - 1388
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/
DO  - 10.1016/j.crma.2009.10.003
LA  - en
ID  - CRMATH_2009__347_23-24_1385_0
ER  - 
%0 Journal Article
%A Nursultanov, Erlan
%A Tikhonov, Sergey
%A Tleukhanova, Nazerke
%T Norm inequalities for convolution operators
%J Comptes Rendus. Mathématique
%D 2009
%P 1385-1388
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/
%R 10.1016/j.crma.2009.10.003
%G en
%F CRMATH_2009__347_23-24_1385_0
Nursultanov, Erlan; Tikhonov, Sergey; Tleukhanova, Nazerke. Norm inequalities for convolution operators. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1385-1388. doi : 10.1016/j.crma.2009.10.003. http://www.numdam.org/articles/10.1016/j.crma.2009.10.003/

[1] Bastero, J.; Milman, M.; Ruiz, F. A note on L(,q) spaces and Sobolev embeddings, Indiana Univ. Math. J., Volume 52 (2003), pp. 1215-1230

[2] Bennett, C.; DeVore, R.; Sharpley, R. Weak-L and BMO, Ann. Math. (2), Volume 113 (1981), pp. 601-611

[3] Bennett, C.; Sharpley, R. Interpolation of Operators, Academic Press, 1988

[4] Blozinski, A.P. On a convolution theorem for Lp,q spaces, Trans. Amer. Math. Soc., Volume 164 (1972), pp. 255-265

[5] Blozinski, A.P. Convolution of L(p,q) functions, Proc. Amer. Math. Soc., Volume 32 (1972) no. 1, pp. 237-240

[6] Feichtinger, H.G. Banach convolution algebras of Wiener type, Budapest, 1980 (Colloq. Math. Soc. János Bolyai), Volume vol. 35, North-Holland, Amsterdam (1983), pp. 509-524

[7] Hunt, R.A. On L(p,q) spaces, Enseign. Math. (2), Volume 12 (1966), pp. 249-276

[8] Kerman, R.A. Convolution theorems with weights, Trans. Amer. Math. Soc., Volume 280 (1983) no. 1, pp. 207-219

[9] E. Nursultanov, S. Tikhonov, Convolution inequalities in Lorentz spaces, online access: http://www.crm.cat, preprint No. 801, 2008, submitted for publication

[10] E. Nursultanov, S. Tikhonov, Net spaces and boundedness of integral operators, online access: http://www.crm.cat, preprint No. 800, 2008, submitted for publication

[11] E. Nursultanov, S. Tikhonov, N. Tleukhanova, Norm convolution inequalities in Lebesgue spaces, online access: http://www.crm.cat, preprint No. 876, 2009, submitted for publication

[12] O'Neil, R. Convolution operators and L(p,q) spaces, Duke Math. J., Volume 30 (1963), pp. 129-142

[13] Stepanov, V.D. Some Topics in the Theory of Integral Convolution Operators, Dalnauka, Vladivostok, 2000

[14] Yap, L.Y.H. Some remarks on convolution operators and l(p,q) spaces, Duke Math. J., Volume 36 (1969), pp. 647-658

Cité par Sources :