Nous étudions des inégalités de normes de convolutions dans les espaces de Lebesgue et de Lorentz. En premier lieu, nous améliorons l'inégalité bien connue de O'Neil sur les opérateurs de convolution et nous établissons une minoration. En second lieu, nous donnons une estimation du type de Young–O'Neil dans les espaces de Lorentz, à savoir
We study norm convolution inequalities in Lebesgue and Lorentz spaces. First, we improve the well-known O'Neil's inequality for the convolution operators and prove corresponding estimate from below. Second, we obtain Young–O'Neil-type estimate in the Lorentz spaces for the limit value parameters, i.e.,
Accepté le :
Publié le :
@article{CRMATH_2009__347_23-24_1385_0, author = {Nursultanov, Erlan and Tikhonov, Sergey and Tleukhanova, Nazerke}, title = {Norm inequalities for convolution operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1385--1388}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.10.003}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.10.003/} }
TY - JOUR AU - Nursultanov, Erlan AU - Tikhonov, Sergey AU - Tleukhanova, Nazerke TI - Norm inequalities for convolution operators JO - Comptes Rendus. Mathématique PY - 2009 SP - 1385 EP - 1388 VL - 347 IS - 23-24 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.10.003/ DO - 10.1016/j.crma.2009.10.003 LA - en ID - CRMATH_2009__347_23-24_1385_0 ER -
%0 Journal Article %A Nursultanov, Erlan %A Tikhonov, Sergey %A Tleukhanova, Nazerke %T Norm inequalities for convolution operators %J Comptes Rendus. Mathématique %D 2009 %P 1385-1388 %V 347 %N 23-24 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.10.003/ %R 10.1016/j.crma.2009.10.003 %G en %F CRMATH_2009__347_23-24_1385_0
Nursultanov, Erlan; Tikhonov, Sergey; Tleukhanova, Nazerke. Norm inequalities for convolution operators. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1385-1388. doi : 10.1016/j.crma.2009.10.003. https://www.numdam.org/articles/10.1016/j.crma.2009.10.003/
[1] A note on
[2] Weak-
[3] Interpolation of Operators, Academic Press, 1988
[4] On a convolution theorem for
[5] Convolution of
[6] Banach convolution algebras of Wiener type, Budapest, 1980 (Colloq. Math. Soc. János Bolyai), Volume vol. 35, North-Holland, Amsterdam (1983), pp. 509-524
[7] On
[8] Convolution theorems with weights, Trans. Amer. Math. Soc., Volume 280 (1983) no. 1, pp. 207-219
[9] E. Nursultanov, S. Tikhonov, Convolution inequalities in Lorentz spaces, online access: http://www.crm.cat, preprint No. 801, 2008, submitted for publication
[10] E. Nursultanov, S. Tikhonov, Net spaces and boundedness of integral operators, online access: http://www.crm.cat, preprint No. 800, 2008, submitted for publication
[11] E. Nursultanov, S. Tikhonov, N. Tleukhanova, Norm convolution inequalities in Lebesgue spaces, online access: http://www.crm.cat, preprint No. 876, 2009, submitted for publication
[12] Convolution operators and
[13] Some Topics in the Theory of Integral Convolution Operators, Dalnauka, Vladivostok, 2000
[14] Some remarks on convolution operators and
Cité par Sources :