Nous proposons un algorithme proximal général pour l'inversion de matrices mal-conditionnées. Cet algorithme est basé sur une caractérisation variationnelle des pseudo-inverses. Nous montrons qu'un cas particulier (avec paramètre de régularisation constant) appartient à la classe des méthodes de point fixe. La convergence de l'algorithme est aussi considérée et discutée.
We propose a general proximal algorithm for the inversion of ill-conditioned matrices. This algorithm is based on a variational characterization of pseudo-inverses. We show that a particular instance of it (with constant regularization parameter) belongs to the class of fixed point methods. Convergence of the algorithm is also discussed.
Accepté le :
Publié le :
@article{CRMATH_2009__347_23-24_1435_0, author = {Mar\'echal, Pierre and Rondepierre, Aude}, title = {A proximal approach to the inversion of ill-conditioned matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {1435--1438}, publisher = {Elsevier}, volume = {347}, number = {23-24}, year = {2009}, doi = {10.1016/j.crma.2009.09.026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/} }
TY - JOUR AU - Maréchal, Pierre AU - Rondepierre, Aude TI - A proximal approach to the inversion of ill-conditioned matrices JO - Comptes Rendus. Mathématique PY - 2009 SP - 1435 EP - 1438 VL - 347 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/ DO - 10.1016/j.crma.2009.09.026 LA - en ID - CRMATH_2009__347_23-24_1435_0 ER -
%0 Journal Article %A Maréchal, Pierre %A Rondepierre, Aude %T A proximal approach to the inversion of ill-conditioned matrices %J Comptes Rendus. Mathématique %D 2009 %P 1435-1438 %V 347 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/ %R 10.1016/j.crma.2009.09.026 %G en %F CRMATH_2009__347_23-24_1435_0
Maréchal, Pierre; Rondepierre, Aude. A proximal approach to the inversion of ill-conditioned matrices. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1435-1438. doi : 10.1016/j.crma.2009.09.026. http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/
[1] Analyse Numérique Matricielle, Collection Sciences Sup, Dunod, 2008
[2] Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied Mathematics, University Press, Cambridge, 1989
[3] Convergence of some algorithms for convex minimization, Math. Programming, Volume 62 (1993), pp. 161-275
[4] Asymptotic convergence analysis of the proximal point algorithm, SIAM Journal on Control and Optimization, Volume 22 (1984) no. 2, pp. 277-293
[5] B. Martinet, Régularisation d'inéquations variationelles par approximations successives, Revue Française d'Informatique et de Recherche Opérationelle, 1970, pp. 154–159
[6] Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, Volume 14 (1976) no. 5, pp. 877-898
[7] G. Vige, Proximal-point algorithm for minimizing quadratic functions, INRIA Research Report RR-2610, 1995
Cité par Sources :