Numerical Analysis
A proximal approach to the inversion of ill-conditioned matrices
[Une approche proximale de l'inversion des matrices mal-conditionnées]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1435-1438.

Nous proposons un algorithme proximal général pour l'inversion de matrices mal-conditionnées. Cet algorithme est basé sur une caractérisation variationnelle des pseudo-inverses. Nous montrons qu'un cas particulier (avec paramètre de régularisation constant) appartient à la classe des méthodes de point fixe. La convergence de l'algorithme est aussi considérée et discutée.

We propose a general proximal algorithm for the inversion of ill-conditioned matrices. This algorithm is based on a variational characterization of pseudo-inverses. We show that a particular instance of it (with constant regularization parameter) belongs to the class of fixed point methods. Convergence of the algorithm is also discussed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.026
Maréchal, Pierre 1 ; Rondepierre, Aude 2

1 Institut de mathématiques, université Paul-Sabatier, 31062 Toulouse cedex 9, France
2 Institut de mathématiques, INSA de Toulouse, département GMM, 31077 Toulouse cedex 4, France
@article{CRMATH_2009__347_23-24_1435_0,
     author = {Mar\'echal, Pierre and Rondepierre, Aude},
     title = {A proximal approach to the inversion of ill-conditioned matrices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1435--1438},
     publisher = {Elsevier},
     volume = {347},
     number = {23-24},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/}
}
TY  - JOUR
AU  - Maréchal, Pierre
AU  - Rondepierre, Aude
TI  - A proximal approach to the inversion of ill-conditioned matrices
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1435
EP  - 1438
VL  - 347
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/
DO  - 10.1016/j.crma.2009.09.026
LA  - en
ID  - CRMATH_2009__347_23-24_1435_0
ER  - 
%0 Journal Article
%A Maréchal, Pierre
%A Rondepierre, Aude
%T A proximal approach to the inversion of ill-conditioned matrices
%J Comptes Rendus. Mathématique
%D 2009
%P 1435-1438
%V 347
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/
%R 10.1016/j.crma.2009.09.026
%G en
%F CRMATH_2009__347_23-24_1435_0
Maréchal, Pierre; Rondepierre, Aude. A proximal approach to the inversion of ill-conditioned matrices. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1435-1438. doi : 10.1016/j.crma.2009.09.026. http://www.numdam.org/articles/10.1016/j.crma.2009.09.026/

[1] Amodei, L.; Dedieu, J.-P. Analyse Numérique Matricielle, Collection Sciences Sup, Dunod, 2008

[2] Ciarlet, P.G. Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied Mathematics, University Press, Cambridge, 1989

[3] Correa, R.; Lemaréchal, C. Convergence of some algorithms for convex minimization, Math. Programming, Volume 62 (1993), pp. 161-275

[4] Luque, F.J. Asymptotic convergence analysis of the proximal point algorithm, SIAM Journal on Control and Optimization, Volume 22 (1984) no. 2, pp. 277-293

[5] B. Martinet, Régularisation d'inéquations variationelles par approximations successives, Revue Française d'Informatique et de Recherche Opérationelle, 1970, pp. 154–159

[6] Rockafellar, R.T. Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, Volume 14 (1976) no. 5, pp. 877-898

[7] G. Vige, Proximal-point algorithm for minimizing quadratic functions, INRIA Research Report RR-2610, 1995

Cité par Sources :