Géométrie différentielle
Laplacien hypoelliptique et intégrales orbitales
Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1189-1195.

On donne une nouvelle méthode de calcul d'intégrales orbitales utilisant le Laplacien hypoelliptique. On obtient un formalisme unifiant le théorème de l'indice d'Atiyah–Singer et la formule des traces.

We give a new approach to orbital integrals based on the hypoelliptic Laplacian. The formalism unifies the Atiyah–Singer index theorem and the trace formula.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.09.014
Bismut, Jean-Michel 1

1 Département de mathématique, université Paris-Sud, bâtiment 425, 91405 Orsay cedex, France
@article{CRMATH_2009__347_19-20_1189_0,
     author = {Bismut, Jean-Michel},
     title = {Laplacien hypoelliptique et int\'egrales orbitales},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1189--1195},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.09.014},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/}
}
TY  - JOUR
AU  - Bismut, Jean-Michel
TI  - Laplacien hypoelliptique et intégrales orbitales
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1189
EP  - 1195
VL  - 347
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/
DO  - 10.1016/j.crma.2009.09.014
LA  - fr
ID  - CRMATH_2009__347_19-20_1189_0
ER  - 
%0 Journal Article
%A Bismut, Jean-Michel
%T Laplacien hypoelliptique et intégrales orbitales
%J Comptes Rendus. Mathématique
%D 2009
%P 1189-1195
%V 347
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/
%R 10.1016/j.crma.2009.09.014
%G fr
%F CRMATH_2009__347_19-20_1189_0
Bismut, Jean-Michel. Laplacien hypoelliptique et intégrales orbitales. Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1189-1195. doi : 10.1016/j.crma.2009.09.014. http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/

[1] Ballmann, W.; Gromov, M.; Schroeder, V. Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser Boston Inc., Boston, MA, 1985

[2] Bismut, J.-M. Large Deviations and the Malliavin Calculus, Progr. Math., vol. 45, Birkhäuser Boston Inc., Boston, MA, 1984

[3] Bismut, J.-M. The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476 (electronic)

[4] Bismut, J.-M. The hypoelliptic Dirac operator, Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 113-246

[5] Bismut, J.-M. The hypoelliptic Laplacian on a compact Lie group, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2190-2232

[6] J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, 2009, in preparation

[7] Bismut, J.-M.; Lebeau, G. The Hypoelliptic Laplacian and Ray–Singer Metrics, Ann. of Math. Stud., vol. 167, Princeton University Press, Princeton, NJ, 2008

[8] Hörmander, L. Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171

[9] Kostant, B. On Macdonald's η-function formula, the Laplacian and generalized exponents, Adv. Math., Volume 20 (1976) no. 2, pp. 179-212

[10] Kostant, B. Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition C(g)=EndVρC(P), and the g-module structure of g, Adv. Math., Volume 125 (1997) no. 2, pp. 275-350

[11] Lebeau, G. Geometric Fokker–Planck equations, Port. Math. (N.S.), Volume 62 (2005) no. 4, pp. 469-530

[12] Malliavin, P. Stochastic calculus of variation and hypoelliptic operators, Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, Wiley, New York (1978), pp. 195-263

[13] Witten, E. Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1983) no. 4, pp. 661-692 (1982)

Cité par Sources :