On donne une nouvelle méthode de calcul d'intégrales orbitales utilisant le Laplacien hypoelliptique. On obtient un formalisme unifiant le théorème de l'indice d'Atiyah–Singer et la formule des traces.
We give a new approach to orbital integrals based on the hypoelliptic Laplacian. The formalism unifies the Atiyah–Singer index theorem and the trace formula.
Accepté le :
Publié le :
@article{CRMATH_2009__347_19-20_1189_0, author = {Bismut, Jean-Michel}, title = {Laplacien hypoelliptique et int\'egrales orbitales}, journal = {Comptes Rendus. Math\'ematique}, pages = {1189--1195}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.014}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/} }
TY - JOUR AU - Bismut, Jean-Michel TI - Laplacien hypoelliptique et intégrales orbitales JO - Comptes Rendus. Mathématique PY - 2009 SP - 1189 EP - 1195 VL - 347 IS - 19-20 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/ DO - 10.1016/j.crma.2009.09.014 LA - fr ID - CRMATH_2009__347_19-20_1189_0 ER -
%0 Journal Article %A Bismut, Jean-Michel %T Laplacien hypoelliptique et intégrales orbitales %J Comptes Rendus. Mathématique %D 2009 %P 1189-1195 %V 347 %N 19-20 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/ %R 10.1016/j.crma.2009.09.014 %G fr %F CRMATH_2009__347_19-20_1189_0
Bismut, Jean-Michel. Laplacien hypoelliptique et intégrales orbitales. Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1189-1195. doi : 10.1016/j.crma.2009.09.014. http://www.numdam.org/articles/10.1016/j.crma.2009.09.014/
[1] Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser Boston Inc., Boston, MA, 1985
[2] Large Deviations and the Malliavin Calculus, Progr. Math., vol. 45, Birkhäuser Boston Inc., Boston, MA, 1984
[3] The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476 (electronic)
[4] The hypoelliptic Dirac operator, Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 113-246
[5] The hypoelliptic Laplacian on a compact Lie group, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2190-2232
[6] J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, 2009, in preparation
[7] The Hypoelliptic Laplacian and Ray–Singer Metrics, Ann. of Math. Stud., vol. 167, Princeton University Press, Princeton, NJ, 2008
[8] Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171
[9] On Macdonald's η-function formula, the Laplacian and generalized exponents, Adv. Math., Volume 20 (1976) no. 2, pp. 179-212
[10] Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition , and the -module structure of , Adv. Math., Volume 125 (1997) no. 2, pp. 275-350
[11] Geometric Fokker–Planck equations, Port. Math. (N.S.), Volume 62 (2005) no. 4, pp. 469-530
[12] Stochastic calculus of variation and hypoelliptic operators, Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976, Wiley, New York (1978), pp. 195-263
[13] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1983) no. 4, pp. 661-692 (1982)
Cité par Sources :