Geometry
Homogeneous Einstein–Randers spaces of negative Ricci curvature
[Espaces Einstein–Randers homogènes avec courbure de Ricci négative]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1169-1172.

Nous prouvons que l'espace Einstein–Randers homogéne avec courbure de Ricci négative doit être Riemannian.

We prove that a homogeneous Einstein–Randers space with negative Ricci curvature must be Riemannian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.08.006
Deng, Shaoqiang 1 ; Hou, Zixin 1

1 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR China
@article{CRMATH_2009__347_19-20_1169_0,
     author = {Deng, Shaoqiang and Hou, Zixin},
     title = {Homogeneous {Einstein{\textendash}Randers} spaces of negative {Ricci} curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1169--1172},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.08.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.08.006/}
}
TY  - JOUR
AU  - Deng, Shaoqiang
AU  - Hou, Zixin
TI  - Homogeneous Einstein–Randers spaces of negative Ricci curvature
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1169
EP  - 1172
VL  - 347
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.08.006/
DO  - 10.1016/j.crma.2009.08.006
LA  - en
ID  - CRMATH_2009__347_19-20_1169_0
ER  - 
%0 Journal Article
%A Deng, Shaoqiang
%A Hou, Zixin
%T Homogeneous Einstein–Randers spaces of negative Ricci curvature
%J Comptes Rendus. Mathématique
%D 2009
%P 1169-1172
%V 347
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.08.006/
%R 10.1016/j.crma.2009.08.006
%G en
%F CRMATH_2009__347_19-20_1169_0
Deng, Shaoqiang; Hou, Zixin. Homogeneous Einstein–Randers spaces of negative Ricci curvature. Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1169-1172. doi : 10.1016/j.crma.2009.08.006. http://www.numdam.org/articles/10.1016/j.crma.2009.08.006/

[1] Akbar-Zadeh, H. Sur les espaces de Finsler à courbures sectionelles constantes, Acad. Roy. Belg. Bull. Cl. Sci., Volume 74 (1988), pp. 281-322

[2] Alekseevskii, D.V.; Kinmel'fel'd, B.N. Structure of homogeneous Riemannian manifolds with zero Ricci curvature, Functional Anal. Appl., Volume 9 (1975), pp. 95-102

[3] Bao, D.; Robles, C. Ricci and flag curvatures in Finsler geometry (Bao, D.; Bryant, R.L.; Chern, S.S.; Shen, Z., eds.), A Sampler of Riemannian–Finsler Geometry, Cambridge University Press, 2004, pp. 197-260

[4] Bao, D.; Robles, C.; Shen, Z. Zermelo navigation on Riemannian manifolds, J. Diff. Geom., Volume 66 (2004), pp. 377-435

[5] Besse, A. Einstein Manifolds, Springer-Verlag, 1987

[6] Deng, S.; Hou, Z. The group of isometries of a Finsler space, Pacific J. Math., Volume 207 (2002), pp. 149-157

[7] Deng, S.; Hou, Z. Invariant Randers metrics on homogeneous Riemannian manifold, J. Phys. A: Math. Gen., Volume 37 (2004), pp. 4353-4360 (Corrigendum: J. Phys. A: Math. Gen., 39, 2006, pp. 5249-5250)

[8] Shen, Z. Finsler metrics with K=0 and S=0, Canadian J. Math., Volume 55 (2003), pp. 112-132

Cité par Sources :

Supported by NSFC of China (No. 10671096).