Number Theory
Appendix to the Note “The structure of the set of numbers with the Lehmer property”
[Appendice à l'article : « Structure de l'ensemble des entiers possèdant la propriété de Lehmer »]
Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1111-1114.

Soit φ la fonction indicatrice d'Euler, et P un polynôme unitaire à coefficients entiers et de degré strictement positif. En combinant les techniques de démonstration de notre précédent article et celles d'un article récent de Hernández et Luca, nous généralisons le résultat suivant de Hernández et Luca : l'ensemble des entiers n strictement positifs composés tels que φ(n)|n1 et P(φ(n))0(mod n), est fini. La généralisation est quantitative, et s'applique aussi à l'analogue unitaire du problème de Lehmer (antérieurement étudié par Subbarao et Siva Rama Prasad).

Let φ denote the Euler totient function, and let P be a monic polynomial with integer coefficients and positive degree. Combining the techniques of proof from our previous paper and that of a recent paper by Hernández and Luca we generalize the following result of Hernández and Luca: the set of composite positive integers n such that φ(n)|n1 and P(φ(n))0(mod n) is finite. The generalization is of the quantitative type, and applies also to the so-called unitary analogue of the Lehmer problem (studied earlier by Subbarao and Siva Rama Prasad).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.07.019
Wójtowicz, Marek 1 ; Skonieczna, Marta 1

1 Instytut Matematyki, Uniwersytet Kazimierza Wielkiego, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
@article{CRMATH_2009__347_19-20_1111_0,
     author = {W\'ojtowicz, Marek and Skonieczna, Marta},
     title = {Appendix to the {Note} {{\textquotedblleft}The} structure of the set of numbers with the {Lehmer} property{\textquotedblright}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1111--1114},
     publisher = {Elsevier},
     volume = {347},
     number = {19-20},
     year = {2009},
     doi = {10.1016/j.crma.2009.07.019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.07.019/}
}
TY  - JOUR
AU  - Wójtowicz, Marek
AU  - Skonieczna, Marta
TI  - Appendix to the Note “The structure of the set of numbers with the Lehmer property”
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1111
EP  - 1114
VL  - 347
IS  - 19-20
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.07.019/
DO  - 10.1016/j.crma.2009.07.019
LA  - en
ID  - CRMATH_2009__347_19-20_1111_0
ER  - 
%0 Journal Article
%A Wójtowicz, Marek
%A Skonieczna, Marta
%T Appendix to the Note “The structure of the set of numbers with the Lehmer property”
%J Comptes Rendus. Mathématique
%D 2009
%P 1111-1114
%V 347
%N 19-20
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.07.019/
%R 10.1016/j.crma.2009.07.019
%G en
%F CRMATH_2009__347_19-20_1111_0
Wójtowicz, Marek; Skonieczna, Marta. Appendix to the Note “The structure of the set of numbers with the Lehmer property”. Comptes Rendus. Mathématique, Tome 347 (2009) no. 19-20, pp. 1111-1114. doi : 10.1016/j.crma.2009.07.019. http://www.numdam.org/articles/10.1016/j.crma.2009.07.019/

[1] Deaconescu, M. On the equation m1=aφ(n), Integers: Electronic Journal of Combinatorial Number Theory, Volume 6 (2006) (Paper A06)

[2] Grytczuk, A.; Wójtowicz, M. On a Lehmer problem concerning Euler's totient function, Proc. Japan Acad. Ser. A, Volume 79 (2003), pp. 136-138

[3] Guy, R. Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004

[4] Hernández, S.H.; Luca, F. A note on Deaconescu's result concerning Lehmer's problem, Integers: Electronic Journal of Combinatorial Number Theory, Volume 8 (2008) (Paper A12)

[5] Lehmer, D.H. On Euler's totient function, Bull. Amer. Math. Soc., Volume 38 (1932), pp. 745-751

[6] LeVeque, W.J. Topics in Number Theory, vol. I, Dower Publications Inc., New York, 2002

[7] Robin, G. Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valuers de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith., Volume 42 (1983), pp. 367-389

[8] Rosser, J.B.; Schoenfeld, L. Approximation formulas for some functions of prime numbers, Illinois J. Math., Volume 6 (1962), pp. 64-94

[9] Siva Rama Prasad, V.; Dixit, U. Inequalities related to the unitary analogue of Lehmer problem, J. Inequal. Pure Appl. Math., Volume 7 (2006) (Article 142)

[10] Skonieczna, M. Some results on the unitary analogue of the Lehmer problem, J. Inequal. Pure Appl. Math., Volume 9 (2008) (Article 55)

[11] Subbarao, M.V.; Siva Rama Prasad, V. Some analogues of a Lehmer problem on the totient function, Rocky Mountain J. Math., Volume 15 (1985), pp. 609-619

[12] Wójtowicz, M.; Skonieczna, M. The structure of the set of numbers with the Lehmer property, C. R. Acad. Sci. Paris Ser. I, Volume 346 (2008), pp. 727-728

Cité par Sources :