Complex Analysis
A solution of Gromov's Vaserstein problem
[Une solution du problème de Vaserstein tel qu'énoncé par Gromov]
Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1239-1243.

Nous annonçons qu'une application holomorphe homotopiquement triviale d'un espace de Stein réduit de dimension finie vers SLn(C) peut être factorisée par un produit fini de matrices unipotentes à coefficients holomorphes.

We announce that a null-homotopic holomorphic mapping from a finite dimensional reduced Stein space into SLn(C) can be factored into a finite product of unipotent matrices with holomorphic entries.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.10.017
Ivarsson, Björn 1 ; Kutzschebauch, Frank 1

1 Departement Mathematik, Universität Bern, Sidlerstrasse 5, CH–3012 Bern, Switzerland
@article{CRMATH_2008__346_23-24_1239_0,
     author = {Ivarsson, Bj\"orn and Kutzschebauch, Frank},
     title = {A solution of {Gromov's} {Vaserstein} problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1239--1243},
     publisher = {Elsevier},
     volume = {346},
     number = {23-24},
     year = {2008},
     doi = {10.1016/j.crma.2008.10.017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/}
}
TY  - JOUR
AU  - Ivarsson, Björn
AU  - Kutzschebauch, Frank
TI  - A solution of Gromov's Vaserstein problem
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1239
EP  - 1243
VL  - 346
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/
DO  - 10.1016/j.crma.2008.10.017
LA  - en
ID  - CRMATH_2008__346_23-24_1239_0
ER  - 
%0 Journal Article
%A Ivarsson, Björn
%A Kutzschebauch, Frank
%T A solution of Gromov's Vaserstein problem
%J Comptes Rendus. Mathématique
%D 2008
%P 1239-1243
%V 346
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/
%R 10.1016/j.crma.2008.10.017
%G en
%F CRMATH_2008__346_23-24_1239_0
Ivarsson, Björn; Kutzschebauch, Frank. A solution of Gromov's Vaserstein problem. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1239-1243. doi : 10.1016/j.crma.2008.10.017. http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/

[1] Cohn, P.M. On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math., Volume 30 (1966), pp. 5-53

[2] Eliashberg, Y.; Gromov, M. Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2+1, Ann. of Math. (2), Volume 136 (1992) no. 1, pp. 123-135

[3] Forstnerič, F. The Oka principle for sections of stratified fiber bundles (Pure Appl. Math. Quart., in press) | arXiv

[4] Forstnerič, F.; Prezelj, J. Extending holomorphic sections from complex subvarieties, Math. Z., Volume 236 (2001) no. 1, pp. 43-68

[5] Forster, O. Topologische Methoden in der Theorie Steinscher Räume, Nice, 1970 (Actes du Congrès International des Mathématiciens), Volume vol. 2, Gauthier-Villars, Paris (1971), pp. 613-618

[6] Forster, O.; Ramspott, K.J. Analytische Modulgarben und Endromisbündel, Invent. Math., Volume 2 (1966), pp. 145-170

[7] Forster, O.; Ramspott, K.J. Okasche Paare von Garben nicht-abelscher Gruppen, Invent. Math., Volume 1 (1966), pp. 260-286

[8] Forster, O.; Ramspott, K.J. Homotopieklassen von Idealbasen in Steinschen Algebren, Invent. Math., Volume 5 (1968), pp. 255-276

[9] Forster, O.; Ramspott, K.J. Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln, Arch. Math. (Basel), Volume 19 (1968), pp. 417-422

[10] Grunewald, F.; Mennicke, J.; Vaserstein, L. On the groups SL2(Z[x]) and SL2(k[x,y]), Israel J. Math., Volume 86 (1994) no. 1–3, pp. 157-193

[11] Grauert, H. Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann., Volume 133 (1957), pp. 139-159

[12] Grauert, H. Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann., Volume 133 (1957), pp. 450-472

[13] Grauert, H. Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273

[14] Gromov, M. Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989) no. 4, pp. 851-897

[15] Rosenberg, J. Algebraic K-Theory and its Applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994

[16] Schürmann, J. Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann., Volume 307 (1997) no. 3, pp. 381-399

[17] Suslin, A.A. The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 2, pp. 235-252 (477, English translation: Math. USSR Izv., 11, 1977, pp. 221-238)

[18] Thurston, W.; Vaserstein, L. On K1-theory of the Euclidean space, Topology Appl., Volume 23 (1986) no. 2, pp. 145-148

[19] Vaserstein, L. Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc., Volume 103 (1988) no. 3, pp. 741-746

[20] Wright, D. The amalgamated free product structure of GL2(k[X1,,Xn]) and the weak Jacobian theorem for two variables, J. Pure Appl. Algebra, Volume 12 (1978) no. 3, pp. 235-251

Cité par Sources :