Nous annonçons qu'une application holomorphe homotopiquement triviale d'un espace de Stein réduit de dimension finie vers peut être factorisée par un produit fini de matrices unipotentes à coefficients holomorphes.
We announce that a null-homotopic holomorphic mapping from a finite dimensional reduced Stein space into can be factored into a finite product of unipotent matrices with holomorphic entries.
Accepté le :
Publié le :
@article{CRMATH_2008__346_23-24_1239_0, author = {Ivarsson, Bj\"orn and Kutzschebauch, Frank}, title = {A solution of {Gromov's} {Vaserstein} problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1239--1243}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/} }
TY - JOUR AU - Ivarsson, Björn AU - Kutzschebauch, Frank TI - A solution of Gromov's Vaserstein problem JO - Comptes Rendus. Mathématique PY - 2008 SP - 1239 EP - 1243 VL - 346 IS - 23-24 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/ DO - 10.1016/j.crma.2008.10.017 LA - en ID - CRMATH_2008__346_23-24_1239_0 ER -
%0 Journal Article %A Ivarsson, Björn %A Kutzschebauch, Frank %T A solution of Gromov's Vaserstein problem %J Comptes Rendus. Mathématique %D 2008 %P 1239-1243 %V 346 %N 23-24 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/ %R 10.1016/j.crma.2008.10.017 %G en %F CRMATH_2008__346_23-24_1239_0
Ivarsson, Björn; Kutzschebauch, Frank. A solution of Gromov's Vaserstein problem. Comptes Rendus. Mathématique, Tome 346 (2008) no. 23-24, pp. 1239-1243. doi : 10.1016/j.crma.2008.10.017. http://www.numdam.org/articles/10.1016/j.crma.2008.10.017/
[1] On the structure of the of a ring, Inst. Hautes Études Sci. Publ. Math., Volume 30 (1966), pp. 5-53
[2] Embeddings of Stein manifolds of dimension n into the affine space of dimension , Ann. of Math. (2), Volume 136 (1992) no. 1, pp. 123-135
[3] The Oka principle for sections of stratified fiber bundles (Pure Appl. Math. Quart., in press) | arXiv
[4] Extending holomorphic sections from complex subvarieties, Math. Z., Volume 236 (2001) no. 1, pp. 43-68
[5] Topologische Methoden in der Theorie Steinscher Räume, Nice, 1970 (Actes du Congrès International des Mathématiciens), Volume vol. 2, Gauthier-Villars, Paris (1971), pp. 613-618
[6] Analytische Modulgarben und Endromisbündel, Invent. Math., Volume 2 (1966), pp. 145-170
[7] Okasche Paare von Garben nicht-abelscher Gruppen, Invent. Math., Volume 1 (1966), pp. 260-286
[8] Homotopieklassen von Idealbasen in Steinschen Algebren, Invent. Math., Volume 5 (1968), pp. 255-276
[9] Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln, Arch. Math. (Basel), Volume 19 (1968), pp. 417-422
[10] On the groups and , Israel J. Math., Volume 86 (1994) no. 1–3, pp. 157-193
[11] Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann., Volume 133 (1957), pp. 139-159
[12] Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann., Volume 133 (1957), pp. 450-472
[13] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273
[14] Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989) no. 4, pp. 851-897
[15] Algebraic K-Theory and its Applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994
[16] Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann., Volume 307 (1997) no. 3, pp. 381-399
[17] The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 2, pp. 235-252 (477, English translation: Math. USSR Izv., 11, 1977, pp. 221-238)
[18] On -theory of the Euclidean space, Topology Appl., Volume 23 (1986) no. 2, pp. 145-148
[19] Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc., Volume 103 (1988) no. 3, pp. 741-746
[20] The amalgamated free product structure of and the weak Jacobian theorem for two variables, J. Pure Appl. Algebra, Volume 12 (1978) no. 3, pp. 235-251
Cité par Sources :